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ABSTRACT

A rate-dependent constitutive model is developed which

describes a bruqd spectrum of elastic-plastic response in iso-

tropic metals, ranging from quasi-static behavior through the

thermally activated intermediate strain rate regime, up to

the high strain rate region, where phonon viscosity and rela-

tivistic effects appear to control the flow process. Upon

reverse straining from a plastically prestrained state, the

constitutive model exhibits a rate-dependent Bauschinger

effect.

An attempt has been made to utilize, wherever possible,

current knowledge in the theory of dislocation dynamics in

formulating the constitutive model. It is not the intent,

however, to imply that the model developed necessarily has

physical significance at the microstructural level. The micro-

mechanical mechanisms which govern the mobility and multipli-

cation of dislocations at high strain rates are not well under-

stood at the present time. In most cases, only simple models

of governing deformation mechanisms can be constructed and,

even to accomplish this, considerable speculation is required.

Where dislocation theory is unable to provide guidance in de-

fining and characterizing a particular mechanism, a phenomeno-

logical approach has been followed.

The advanced constitutive model developed here has been

incorporated into the one-dimensional, finite-difference RIP

code. The application of this model to 6061-T6 aluminum is

described.
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FOREWORD

This technical report describes the results of a study
conducted by Systems, Science and Software (S3 ) to develop con-

stitutive models for predicting the dynamic response of metals

to impulsive loading. The work reported here was performed

forthe Defense Atomic Support Agency (DASA), Aerospace Sys-

tems Division, as part of the PREDIX Program under Contract

DASA 01-70-C-0055. The inclusive dates of research were

January 1.969 through September 1970.

The overall effort at S3 on the PREDIX Program, of which

the present report describes only a portion, was conducted

under the general supervision of Dr. Robert A. Kruger, who

served as the Principal Investigator. The material presented

in this report appears also as a chapter in the following

report:

R. A. Kruger, R. H. Fisher, H. E. Read, and J. R.
Triplett, "A Theoretical Investigation of the
Dynamic Response of Metals," Systems, Science and
Software reportNo. 3SR-308, December 1970,

which documents the entire S3 PREDIX effort to date pertain-

ing to metals. Other chapters in the report cited above deal

with the related problems of (1) radiation transport and de-

position, (2) front surface physics, and (3) dynamic fracture.

The authors wish to thank Messrs. W. Isbell, D. Christman,

and S. Babcock of the General Motors Materials and Structures

Laboratory for their cooperation in supplying the majority of

the experimental data used in this study, as well as for a

number of informative discussions. Thanks are also extended

to Dr. C.J. Maiden, who reviewed the manuscript and made

several pertinent suggestions.
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I. INTRODUCTION

During the past ten years, there has been a substantial

continuing effort to develop techniques for predicting the

dynamic response, and damage thresholds, of reentry vehicles

exposed to sudden doses of nuclear radiation. Conceptually,

the general response of such a vehicle can be separated into

an initial phase and a final phase. In the initial phase,

the incident radiation generates thin stress pulses which prop-

pagate through the structure in a localized manner. During

this time, the stress intensity is high and considerable

attenuation of the loading wave occurs; the distribution of

stress may be sufficiently localized to produce material dam-
age. In the final phase of response, the incident radiative

energy has been transmitted throughout the structure by stress
wave propagation, and the stress distribution is much less

localized than in the initial phase. The response of the

vehicle during the final phase is principally of a structural

nature, consisting of elastic vibration, plastic deformation,

buckling and (possibly) fracture in varying degrees, depend-

ing on the intensity of the incident radiation.

A large part of the effort to understand, and model, the

response of reentry vehicles to radiation loading has been

devoted to studies, both experimental and theoretical, of the

constituent materials, such as the metallic backup materials
and the composite ablative materials. In must analyses, the
metallic materials have been described by simple elastic-
plastic models, and for the purpose of systems studies these
appear to provide sufficient accuracy, at least in analyses

of the final response phase.

During the initial phase, however, where the propagation

and attenuation of thin stress pulses are of great concern,

recent studies have cast considerable doubt on the use of the

simple elastic-plastic constitutive model, especially for

, 1



metals such as a-titanium, beryllium, and tantalum, which
exhibit relatively strong strain hardening and strain rate

effects. As is generally known, the simple elastic-plastic

constitutive model, while computationally attractive, cannot

account for increases in the flow stress due to strain hard-

ening and strain rate effects, or changes in the nature of the

strain hardening on reverse loading from a prestrained state
(Bauschinger effect). It has been apparent for some time,

however, that many metals adopted for use in reentry vehicles

exhibit to some degree dynamic response features which the

simple elastic-plastic model does not account for. Moreover,

experimental evidence accumula-,ed during the past few years
indicates that some of the more complex effects not exhibited

by the simple elastic-plastic model may have significant
influence on the calculation of thin pulse propagation and

damage thresholds in metals.

Significant discrepancies between theoretical predictions
based on simple elastic-plastic models and experimental obser-

vation have been reported for a number of metalsý Evidence

of elastic precursor decay and strain rate effects during wave

propagation in a variety of metals has been reported by Jones,
Neilson, and Benedict(2) Taylor and Rice,( 3 ) Barker, Butcher

and Karnes, 4) Karnes( 5 ) and Isbell, Christman, Babcock,
Michaels and Green.(6) Barker, Lundergan and Herrmann(7)

experimentally measured the loading and unloading dynamic

stress-strain relation for 6061-T6 aluminum and observed a
disagreement with predictions based on the simple elastic-

plastic model which they attributed to strain rate effects

and a Bauschinger effect. Additional evidence of a sig-

nificartt Bauschinger effect in 6061-T6 aluminum was re-

ported by Hartman, who measured the residual strain

For a review of elastic-plastic wave propagation phenomena
in metals, the reader is referred to a recent survey paper
by Herrmann. (1)
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after release from a shock compressed state. Erkman and

Christensen,(9" in a study of stress wave propagation in 2024

aluminum, did not observe the two-step shape in the release

wave profile, which is characteristic of simple elastic-plastic

theory. Thin pulse attenuation in 2024 aluminum was studied

by Curran,(10) who found that the simple elastic-plastic theory

resulted in a more delayed attenuation than that which was

experimentally observed. Barker~ll) observed release wave

profiles in 6061-T6 aluminum using a laser interferometer and

found that the data could be fit reasonably well if the simple

elastic-plastic theory was modified to include strain harden-

ing and a strong Bauschinger effect.

In view of the studies mentioned above, it appears that

the simple elastic-plastic theory, while sufficiently adequate

for many applications, may not provide an accurate enough
description of material response when thin pulse attenuation

and spallation are of primary concern. When this is the case,

it appears that a more sophisticated and realistic material

model is needed and a number of attempts in this direction

have been made.

Recent advances in the basic understanding of dislocation

behavior have given considerable insight into the physical pro-

cesses which govern the dynamic plastic response of metals.
As pointed out by Dorn, Mitchell and Hauser( 1 3 ) in a survey

paper on dislocation dynamics, significant progress has been
made recently in identifying the rate-controlling mechanisms

for plastic flow over a wide range of strain rates up to about

103 sec 1 . It appears that it may now be possible to mathemat-

ically model with some degree of realism several of the dislo-

cation mechanisms of importance to plastic wave propagation.

In this connection 15e a recent topical report by Herrmann,
Lawrence and Masont in which the effects of strain harden-
ing, strain rate, and Bauschinger phenomena on thin pulse
attenuation are discussed.
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Using such information, functional forms suggested by disloca-
tion theory may be synthesized to form constitutive equations

for describing dynamic material response over a wide range of

strain rates. Such an approach has been followed, for example,

by Taylor,(4) Gilman,("15  Wilkins, (16) and Johnson and

Barker.(17)

A research program, termed PREDIX, was initiated some

time ago by the Defense Atomic Support Agency (DASA) for the

purpose of developing techniques (both theoretical and nu-

merical) for predicting the response and damage thresholds
of solids exposed to sudden.doses of nuclear radiation. This

program involves a coordinated effort by personnel fromi several
independent research organizations, and has combined the tal-

ents of theoreticians, experimentalists, and numerical code
specialists. A large part of the effort within the PREDIX pro-

gram to date has been devoted to the development of constitu-

tive models for high strain rate elastic-plastic deformation

of metals. This report describes the research performed at

S3 under the PREDIX program in this connection.

In the '.ork reported here, an attempt has been made to

avoid the purely phenomenological approach to constructing con-

stitutive models, .-iich has been followed frequently in the

past, by making as nuch use as possible of the present knowl-
edge of dislocation dynamics. Following this philosophy,

a rate-dependent constitutive model has been developed which

describes a broad spectrum of mechanical response ranging from

quasi-static behavior, through the thermally activated inter-

mediate strain rate regime, up to the high strain rate region,
where phonon viscosity and relativistic effects appear to con-

trol the plastic flow process. Upon reversed loading from a

prestrained state, the model exhibits a Bauschinger effect.

This advanced constitutive model has been incorporated into

the one-dimensional, finite-difference RIP code and applied
successfully thus far to 6061-T6 aluminum.
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It should finally be noted that the present constitutive

model is designed primarily to describe high strain rate plas-

tic flow, for which the governing micromechanical mechanisms

are extremely complica~ed and not well understood at present.

In most instances, onlb simple models of these mechanisms

can be constructed --, -ven to accomplish this, considerable

uncertainty is unavoidable. But because of the approach

followed here, it appears that the present constitutive model

can be readily modified to accommodate an7 improvements which

may be suggested in the future as further understanding of

high strain rate plastic flow in metals is achieved.



II. SALIENT FEATURES OF SHOCK-INDUCED PLASTIC DEFORMATION

There are a number of features that distinguish plastic

deformation under shock loading from that which occurs under

quasi-static or moderate strain rate conditions. Inasmuch as

shock loading is of principal interest in this study, we shall

briefly discuss some of the salient effects that shock load-
ing has on the plastic deformation modes and mechanical pro-

perties of metals. For a more extensive discussion of this
subject, the reader is referred to Ref. 18, where Maiden has

given a survey of the literature up to 1965 dealing with the

effect of shock waves on the properties of metals.

It has been fairly well established that the mechanical

properties of most metals are usually different after they

have been shock loaded than when the loading has occurred under
quasi-static or moderate strain conditions. In many metals

quasi-static loading produces a much greater hardness than

shock loading to the same maximum stress level. Conversely,

for the same amount of strain, the shock-loaded specimen is
much harder than a statically loaded specimen.(19) The signif-

icant changes observed in the dislocation substructure and
strength characteristics, as well as the hardness between shock

and nonshock-loaded specimens seems to indicate that the modes

of plastic deformation may be quite different.

It should be noted at this point that there are two basic

modes by which plastic deformation may take place in polycrys-

talline metals, name, slip and twinning. Depending upon the

nature of the deformation process, these modes may operate
exclusively or jointly. In one respect, twinning differs from

slip in that the interatomic movements within the crystal

structure are only a small fraction of the atomic spacing,

and it appears that the total shear deformation is generally
small. While slip is the likely mode of deformation in most

metals at room temperature and low-to-moderate rates of strein,
twinning can be the dominant mode at high strain rates under
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(20)
shock loading. According to Tegart, twinning can occur

in bcc and fcc metals (such as copper, iron, tantalum, and

nickel) at room temperature under shock loading; there is indi-

cation that twinning may be expected to be an important, if

not dominant, deformation mode in hcp metals (such as a-ti-

tanium and beryllium) at room temperature under both moderate

and high strain rates.

Recent experimental studies on several metals tend to

support the conclusions expressed above. Nolder and Thomas,( 1 9 )

for example, found that the deformation in nickel changed from
-1ip to slip-twinning for shock loading at stresses near 350
kbar. Similarly, Johari and Thomas (21) investigated the defor-
mation modes of pure copper and copper alloy specimens sub-

jected to shock loading and found that the deformation mode

changed from slip to twinning above a critical stress that
depended on the percent alloy in the copper. For pure copper,

this critical stress was in the range of 16-28 kbar. In addi-
tion to these studies, it has been known for some time that

iron and iron-base alloys exhibit extensive twinning (Neumann

bands) after shock loading. Additional studies, recently
reported in Reference 22, provide further confirmation that a

change in the deformation mode o:curs in certain metals under
shock loading.

From the preceding discussion it appears that although
slip may be the most favorable mode of plastic deformation

at low-to-moderate strain rates near room temperature, twinning
may be the dominating mode at high strain rates in some metals

under shock loading. As Gilman has pointed out,(23) profuse

twinning may occur in some metals under impulsive loading.

Therefore, in developing a constitutive equation for high

strain rate processes on the basis of the physical processes
occurring at the substructure level, twinning as well as slip
may have to be given appropriate consideration.

7



If an attempt is made to formulate this approach, one

immediately encounters a difficulty which arises from the

fact that while the equation relating the plastic strain rate.

to the various dislocation characteristics has been well

established for slip deformation, the same is not true for

twinning deformation. If plastic deformation is solely by

slip, it can be shown that the plastic strain rate, y, is
given by ( 23)

bNmV (2.1)

where

b = Burgers vector (cm)

Nm = density of the mobile dislocations (cm" 2 )

v = mean velocity of the mobile dislocations (cm/sec).

On the other hand, the state of knowledge of twinning

deformation is not as advanced as that of slip. However,

several equations have been proposed for describing the plas-

tic strain rate during twinning. The most recent of these

has been suggested by Gilman, (23) and it prescribes the plas-

tic strain rate due to twinning, Ytwin' according to the fol-

lowing relation:

Stwin " sNt (2.2)

where

s = twinning shear strain (dimensionless)

Nt = density of twins intersecting an arbitrary
-2

plane (cm )
A= mean rate of change of cross-sectional area per

twin (cm2 /sec).

8



However, inasmuch as twinning will not be the primary topic of
discussion here, we shall not go into further detail on this
topic. Instead, the reader is referred to References 24 and
25, where crmprehensive accounts of twinning deformation may
be found.

9



Ili. FORMULATION OF THE RATE-DEPENDENT CONSTITUTIVE EQUATION

The basic formulation of the rate-dependent constitutive .!

equation is given in this section. Particular attention is

given to an examination of the various functional forms (some

of which are taken from dislocation theory and others simply

postulated) that have been adopted in synthesizing the material

model. Wherever possible, attempts are made to compare the

viewpoints adopted in formulating the constitutive equation

with those put forth by others.

A. Plastic Deformation by the Slip Process

Polycrystalline metals, when viewed on the microscale, are

inhomogeneous and possess a large number of crystal defects,

termed dislocations. Inhomogeneities also arise from entrained
impurities, precipitates, 'and the general nonuniformity of the

grain structure. When an external load is applied either
statically or dynamically, plastic flow results from the motion

of dislocations (edge and screw) along various glide planes.

Under the action of applied forces, the mobile dislocations V

move rapidly along glide planes until their motion is arrested

by short-range obstacles (energy barriers) lying in their paths.

These obstacles may result from entrained impurities, precip-

itates, fixed dislocations, or grain boundaries. Through the

process of thermal activation, large (random) thermal vibra-

tions assist the dislocation in overcoming the obstacles.
After this has occurred, the dislocation accelerates rapidly

to a high velocity, the magnitude of which is usually governed

by some viscous-like mechanism. The dislocation continues to

travel at this high velocity until it encounters another ob-

stacle and the same process is repeated.

In the sequel, it will be assumed that the major portion

of the plastic flow at a point occurs along slip planes on
,

which the resolved shear stress has its maximum value. We

For a more general treatment of slip deformation, see Ref.26.
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shall denote by c the maximum resolved shear stress on these

planes and by y the component of plastic strain in the direc-

tion of T. The one-dimensional uniaxial stress and uniaxial

strain configurations play an important role in the develop-

ments which follow and, because of this we shall list here

some special features of these configurations for future

reference.

Under uniaxial stress conditions, the maximum shear stress

T occurs on planes inclined at 450 to the axis of the only

nonvanishing principal stress component a; the magnitude of

the maximum shear stress on these planes is given by

T G(3.1)2

We shall employ the symbol e to denote the strain component

in the direction of the stress a.

In the case ofuniaxial strain, the maximum shear stress

acts on planes inclined at 450 to the only nonvanishing prin-
cipal strain e, and its magnitude on these planes is defined

by the equation

S= h (oC 1-a 2) (3 .2)

where a, denotes the principal stress in the direction of c

and a2 is a principal stress component orthogonal to al.

Unless otherwise noted, the natural (or logarithmic) def-

inition of strain is employed throughout this work. On this
basis, the strain c is defined in the following manner for the

case of uniaxial strain

E = £n (p/p 0 ) (3.3)

11



where Po and P denote, respectively, the initial and current

mass density of raterial. From the above definition, it is

seen that the strain e iz positive when the material is com-

pressed.

In the one-dimensional configurations considered herein,

we shall find it convenient to refer to the plastic strain

component in either the direction of uniaxial stress or in the
direction of unixial strain; in either case, this component

of plastic strain will be denoted by ep. By invoking the

condition of incompressibility of the plastic state, it can
be shown that, for these one-dimensional configurations, one

may write

4
Cp (3.4)

Therefore, when reference is made in the sequel to T, Y, ep'
a, a E, and e , the definitions given above will be implied.

When plastic flow takes place by the slip process, the
plastic strain rate j is given by Eq. (2.1). In the develop-
ments that follow, no attempt will be made to distinguish

between dislocation types, such as edge and screw dislocations,

and their corresponding mean velocities. Instead, we shall

treat the terms appearing on the right-hand side of Eq. (2.1)
as suitable weighted averages over the various dislocation

types.

Figure 1 illustrates some of the typical features of

plastic flow in metals for a wide range of strain rates. In

this figure a plot of j versus T for a fixed value of the plas-

tic strain y is depicted for an arbitrary material. For pur-
poses of comparison, the curve corresponding to the simple

elastic-plastic model has been included. The figure shows the

various regions of mechanical response and cites the disloca-
tion mechanism which is rate-controlling in each region. For

12



Simple elastic-plastic model

I-Nonlinear viscous drag

with relativistic effects

Nonlinear viscous drag94 region

U

.94

4- Linear viscous drag
region

�_I -- Transition region
Thermally activated region

T 0 B
Shear Stress, T

Figure 1. Dependence of the plastic strain rate on the
applied shear stress for constant plastic strain.
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shear stresses less than the quasi-static yield stress Tol

there is no plastic flow and the response is purely elastic.
At very small strain rates, where rate effects are insignifi-

cant, the stress-strain relationship dept~nds primarily on the

strain-hardening characteristics of the metal. For inter-

mediate strain rates, the rate-controlling mechanism is thermal

activation; it is in this region where one typically finds

that T % log(y). As the strain rate is increased, the so-called

back stress .B is reached, above which it appears that vis-

cous drag controls the plastic flow process. As the shear

stress T is further increased, the plastic strain rate even-

tually begins to approach a limiting value due to the influence

of relativistic effects, which place an upper bound on the

maximum velocity at which a dislocation can travel.

B. Mean Velocity of Mobile Dislocations

For a deformation process such as we aie considering here,

an expression for the mean velocity v, appearing in Eq. (2.1),

can be derived in the following manner: suppose that the av-

erage dislocation travels a path of length L in time t, and

that there are m types of obstacles, such as immobilized dis-

locations, impurities, etc., distributed in some manner along

this path. The number of obstacles of type i in the interval

L is

L L (3.5)

It should, however, be noted that considerable uncertainty
still remains regarding the dislocation mechanisms and the
shape of the curve in Figure 1 for strain rates above the
linear viscous drag region. Because of the limitations on pres-
ent experimental techniques, measurements of dislocation ve-
locities have not been made for velocities greater than about
one-half the shear wave velocity (see Ref. 13), and it is not
at all clear what the maximum dislocation velocity is.
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where £. is the mean interval between obstacles of type i.
1The time t required for the mobile dislocation to cover the

distance L is the sum of the activation time ta and the glide

time t:

I.- The activation time is the time that elapses while

the dislocation waits to be thermally activated over each of

the obstacles. This is given by the expression

m IH.\

= i exp (3.6)

wheri wi denotes a vibration frequency which depends on the

nature of the obstacle, Hi is the activation energy corres-

ponding to the ith type of obstacle, k is the Boltzmann con-

stant, and T is the temperature.

2. The glide time is the time required for the disloca-

tion to travel between the obstacles over the distance L.

After the dislocation has been thermally activated over an

obstacle, it very rapidly accelerates to some high steady-

state glide velocity ug. If the acceleration time is neglected,
the glide time can be expressed in the form

tg L (3.7)
tg=lugi

As Dorn pointed out,(13) dislocations can accelerate to ex-
tremely high velocities for moderate shear stresses in less
than 10-11 sec. The neglect of acceleration time appears,
therefore, to be justified.

The absolute value sign is introduced to ensure that t will
be a positive quantity regardless of the sign of ug. g
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The mean velocity of the dislocation over the distance L

is, by definition, given by the following expression,

V L (3.8)t a + tg

Upon combining this equation with Eqs. (3.5), (3.6), and (3.7),

we reach the result

U
V• 9 (3.9)

1 + lugI U exp (

A At a fixed temperature, there is evidence that one type

of short-range obstacle is usually rate-controlling when ther-

mal activation is the dominant mode of plastic flow. Then,

with m=l and I=k., Eq. (3.9) reduces to the following form:

u
V u (3.10)

1. + exp

which forms a very important part of the analysis that follows

in the sequel. If the short-range obstacles to dislocation

motion are not significantly affected by straining, the dis-

tance L can be taken as constant in the above expression.

C. The Mobile Dislocation Density

An inspection of Eq. (2.1) will reveal that it is the

density of the mobile dislocations that is required in formu-

lating the constitutive equation. Unfortunately, present

16



experimental methods cannot provide any direct insight into
the dependence of the mobile dislocation density on the defor-
mation state. Current techniques for examining dislocation
substructures with electron microscopes reveal, at best, only

the total dislocation density. If one attempts to develop a
constitutive equation for plastic response by starting from
Eq. (2.1), it thus becomes necessary to make speculations re-

garding the mobile dislocation density. The basic lack of

understanding of this all important component of the governing
equation for plastic flow is so severe that it ranges from

the one extreme of considering all dislocations mobile to the
other extreme of assigning no importance at all to this para-

meter.(27) Several other investigators(15,16) have assumed
that the mobile dislocation density, NmI is some fixed frac-

tion, f, of the instantaneous total dislocation density, N,
while others have assumed that Nm remains fixed in magnitude

throughout the entire deformation. (14) Regardless of the
approach adopted, considerable guesswork is unavoidable. AsI (13)
Dorn and hisco-workers have noted, the magnitude of the
mobile dislocation density, especially under dynamic condi-

tions, is still open to considerable question.

From the standpoint of dislocation theory, it seems likely
that, under rapid dynamic loading conditions, the mobile dis-
location density depends on the excess of the dynamic flow

stress over the quasi-static flow stress, as well as on the
plastic strain. However, for simplicity, we shall restrict

Nm here to depend only on the plastic strain ep.

In view of the existing uncertainty in the mobile dislo-

cation density, the present approach will be to postulate a
seemingly reasonable functional form for the mobile disloca-
tion density, Nm, instead of attempting to derive an expres-

sion for it, as some have done by starting from some highly

simplified models of the complex multiplication and annihila-

17



tion process.("2829) Nonetheless, it should be kept in mind
that these models indicate that, during initial plastic strain-

ing, the mobile dislocation density initially increases with

plastic strain, reaches a maximum, and then decreases with

further increases in the plastic strain, asymptotically ap-

proaching a saturated value. A functional form for N which
m

exhibits these general features and has been adopted in the

present work is

Nm = NmO + (Nmo - NmC + MC exp(-A (3.)p t
In this expression, Nmo denotes the initial mobile dislocation

density; N is the saturation value of the mobile dislocation
density; M is a multiplication coefficient, and A, is an anni-
hilation coefficient.

Unfortunately, it is not possible to experimentally vali-

date the plausibility of the functional form for Nm adopted
above inasmuch as there are no experimental techniques at the

present time for determining mobile dislocation densities.

Because of this, the coefficients which aprear in Eq. (3.11)

cannot be evaluated directly from dislocation density measure-
ments; it becomes necessary to resort to some other (indirect)

technique for evaluating these coefficients and, for this pur-
pose, plastic wave profiles have been utilized. This approach

will be described in detail in Sec. IV C.

D. Decomposition of the Applied Shear Stress

The notion of decomposing the applied shear stress T into

a thermal component r*, which depends on the temperature T
and the plastic strain rate, y, and an athermal component T
which depends on the temperature only through the shear modu-

lus p, was apparently first suggested by Seeger.(30) Accord-
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ing to this view, T, which represents the shear stress in the

slip plane and along the slip direction, may be written in the

following form: (31)

T = T + T* (3.12)

Physically, T* can be thought of as that part of the shear

stress T which is assisted by thermal vibrations in activating

dislocations past short-range obstacles. On the other hand,

the athermal component TP is associated with long-range ob-

stacles which require such large energies to overcome that
thermal vibrations are unimportant.

The form of stress decomposition suggested by Seeger,

and given in Eq. (3.12) above, is valid only for low-to-moderate

strain rates, since no provision for viscous drag effects was
made. At high strain rates, which are of special interest to

the present inquiry, provision must be made in the stress de-

composition for a viscous drag contribution to the total

stress. It has been shown by Kumar, Hauser and Dorn(32) that

the stress decomposition appropriate for high strain-rate con-

ditions is given by

T = T + T* + TD (3.13)

where TD is the part of the total stress that arises from dis-

location drag, and the other symbols have the same meaning as

before. When the applied stress is so large that viscous drag

is the rate-controlling mechanism, the time spent by the dis-

location while waiting to be thermally activated over the

obstacle is very small. In this case, the component of the

stress due to short-range barriers, T*, is not significantly

reduced by thermal activation. Then, as shown in Ref. 32, the

decomposition given in Eq. (3.13) can be placed in the form

T = TB + TD (3.14)
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where the back stress T is defined as the sum of the athermal

stress component T and the the:mal component T* evaluated

at O°K.

E. Athermal Stress Component

The athermal stress T represents the component of the

applied stress T necessary to overcome the resistance of long-

range obstacles to dislocation motion. Long-range obstacles

are sufficiently distant from the dislocation that thermal

activation plays no role in aiding the dislocation to overcome

them. The nature of these long-range obstacles forms the

basis of the various theories of strain hardening. Without

exception, all of the present theories of strain hardening

lead to the same expression for the athermal stress T., namely,*

T = cbivC (3.15)

where a is a dimensionless constant whose magnitude is between

0.2-0.6, b is the Burgers vector, v represents the shear mod-

ulus, and N is the total dislocation density. Although T1 is

termed the athermal stress, it exhibits a small dependence on

temperature through the shear modulus P.

The relationship given in Eq. (3.15) has been experi-

mentally verified for initial loading of a large class of

metals under quasi-static and low strain rate conditions; it

A survey of the various theories of work hardening can be

found in Ref. 33. The dependence of T on N is also dis-
cussed at length in Ref. 34.
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is not known, however, if such a relation is valid for initial

loading at high strain rates during plastic wave propagation.*

When unloading phenomena are a critical aspect of plas-

tic wave propagation analyses - as they are when thin

pulse attenuation and spall are of importance - there is

a critical need for a theory of strain hardening relating T

and y which can realistically describe reverse plastic defor-
mation from a prestrained state as well as initial plastic

deformation from an unstrained state. The need for such a

theory -rises because the majority of metals exhibit a reduc-

tion in the flow stress and a temporary increase in the rate
of strain hardening when the material undergoes reverse plas-

tic strain from an initially prestrained state. A metal

exhibiting such a property is said to have a Bauschinger

effect. To account for such an effect in the present consti-

tutive model, the athermal stress T is taken to have a dif-

ferent dependence on plastic strain during initial loading

than on reverse loading. In this section, we shall confine

our attention to initial plastic loading and reserve the dis-

cussion of reverse loading phenomena for Sec. III.I.

As noted above, considerable speculation is required re-

garding the dependence of the athermal stress Tr on the plas-

tic strain y at the high strain rates of interest to the pres-

ent study. Until evidence to the contrary becomes available,*L
In a recent survey article, Dorn et al. have stated1 13 )
"Before much progress can be made -inusing dislocation theory
for the determination of plastic wave propagation effects, it
will be necessary to ascertain how the values of ... de-
pend on strain .... At present, the only recourse is the experi-
mental evaluation of the needed relationships and these are
somewhat questionable because it is usually assumed that they
are independent of the stress."
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it will be assumed that the dependence given in Eq. (3.15),

which has been confirmed for low strain rate plastic deforma-

tion, is also valid at high strain rates for initial loading.

A relationship between the athermal stress tP and the plastic

strain y may then be obtained if the dependence of the total
dislocation density N on the plastic strain y can be determined.

Considerable insight into the dependence of the disloca-

tion density on plastic strain has been gained through experi-

mental examination of metal substructures with electron micro-

scopes. Results have been reported for several metals, mostly

high-purity, for straining under quasi-static corditions.

More important to the present study, however, is the de-

pendence of the dislocation structure on straining under shock

loading conditions. In this connection, only two experimental
studies pertaining to dislocation structure could be traced.

In the first of these, Gilbert, Wilcox and Hahn have studied
the effect of strain rate on the dislocation density-plastic

strain relationship in molybdenum.(35) In this work, disloca-

tion densities were measured at various strains for strainrtso210s -1 -1

rates of 2x1_ -s sec and 2xl03sec . The results obtained
indicated that the increase in strain rate by a factor of 10'

produced only a slight increase in the dislocation density.
Similar results were recently reported by Kaybyshev, et al.

for copper. (22)

From the results for copper and molybdenum described
above, it appears that the effect of strain rate on the dislo-

cation multiplication process is quite small. The increase

in strain rate apparently causes the mean dislocation velocity

to increase rather than the dislocation density.

Bearing the preceding comments in mind, we shall assume

that the total dislocation density depends on the plastic

strain in the following manner:
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N N + C (,)m (3.16)

"where NO denotes the initial dislocation density and C1, m are00

coefficients. This expression may be rewritten in the form*

N = N0 + C2 (Cp)m (3.17)

when use is made of Eq. (3.4), and the coefficient C2 is defined

as C2 = (3/4)mc1.

Upon combining Eqs. (3.15) and (3/17), we reach the

result

T= T /l+aa ( p)" (3.18)

where we have set

To = abii/W (3.19)

a = C2/N 0

Equation (3.18) gives the expression for the athermal stress

SP during initial loading which will be adopted in the present

work. An inspection of this equation reveals that there are

three constants which must be evaluated for a given material,

namely, To, a, and m. The procedure for evaluating these con-

stants for a specific material will be described later in

Sec. IV.A.l of this report.

F. Thermally Activated Stress Component

Under certain conditions, the applied stress alone may

not be sufficient to drive the dislocations past the short-

Expressions having the form of Eq. (3.17) have been used by
others (e.g., see Refs. 35 and 36) to correlate dislocation
density-plastic strain data.
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range obstacles, such as impurities, immobilized dislocations,

etc., that tend to arrest their motion. If the obstacles are

localized, large random vibrations stemming from thermal ex-
citation of the crystal lattice may assist the dislocations

in overcoming these obstacles. When this occurs, the rate

at which the dislccations are able to surmount the obstacles
governs the character of the plastic flow, and the deformation

process is said to be thermally activated.

It should be noted at this point, however, that it is

not at all clear that it is even necessary to make provision

for thermally activated processes in a constitutive equation

designed primarily to treat plastic wave propagation, where

the principal features of interest occur at strain rates con-

siderably above that at which thermal activation ceases to be

important. It is possibly important, nonetheless, for some
metals and affects the interpretation of yield and strain-

hardening experimental data.

The activation energy Hi, which appears in Eq. (3.6)
given earlier, represents the energy due to thermally induced

vibrations which is required to move the dislocation past the

ith type of obstacle. Theoretical and experimental studies

performed on a large class of metals indicate that the activa-

tion energy depends primarily on the thermal stress component

T,.7 On the basis of these observations, it appears that

one may write with some degree of confidence that

Hi = Hi (T*) (3.20)

where the (unknown) function Hi is, of course, different for

each type of short-range obstacle. As Conrad has noted,( 3 1)

the rate-controlling obstacle not only changes in a given

material with temperature but it varies from one crystal class

to another. At low temperatures (T < 0.25 Tm ), for example,
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it appears that the most likely rate-controlling mechanisms are

(1) the intersection of dislocations in fcc metals, (2) the in-

nerent resistance of the crystal lattice (Peierls-Nabarro

stress) in bcc metals, and (3) either cross-slip, the Peierls-
Nabarro stress, or impurity atoms in hcp metals.( 3 4 ) One can-
not expect, therefore, that a specific form of Hi which is
applicable to one crystal class will be generally applicable
over a wide temperature range to a variety of metals from

different crystal classes. Thus, any attempt to use a single

expression that is not completely general to describe the
activation energy for a group of metals having different crys-

tal structures clearly involves some approximation.

The need for including more than one activation energy
in the equation governing thermally activated flow is uncer-
tain at this time and it has received little or no attention
in the literature. For the majority of metals, it is usually

found that at a fixed temperature the experimental data in
the thermally activated region can be correlated quite well
by assuming that only one type of obstacle governs the pro-
cess, and such a point of view will be adopted here. We
shall, therefore, r4strict the disciussion which follows to

showing how a simple, and in many ways typical, model for
thermal activation can be incorporated into the proposed gen-
eral framework. It is not to be inferred,however, that we
are advocating the general use of the thermal activation model
discussed below in constitutive model development; it is well
known that many metals exhibit a more complex dependence of
the activation energy H on the shear stress T* than that which
is given below. Nevertheless, in most cases considerations

similar to those given below would apply to models for other

thermal activation mechanisms.

,In this connection Dorn has stated, ( ..8 the strain rate
for dislocation motion past a series of different kinds of
obstacles depends essentially on the rate of nucleation past
the most difficult surmountable obstacle."
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In fcc metals such as aluminum and copper at low tem-

peratures (T < 0.25 Tm), Conrad has concluded that it is the
intersection of forest dislocations which controls the ther-
malLy activated process.(34) For such an intersection mecha-

nismSeeger has developed a model for describing the thermally
activated process.(30) In this model the vibration frequency

w appearing in Eq. (3.10) is given by

W V= b (3.21)

where vD denotes the Debye frequency, b is the Burgers vector,
and L is the mean spacing of the forest dislocations being
intersected. The energy H which must be supplied by a vibra-
tional fluctuation in order to complete the intersection is
given in the Seeger model by

H = H - v*T* (3.22)

where Ho is the total energy necessary to form a jog on the

intersecting dislocation, v* is an activation volume, and the

thermally activated stress

T* = T - T (3.23)

is interpreted as the net stress available for assisting the

intersection after the long-range barriers have been overcome.
The stress decomposition appearing in Eq. (3.23) is not as
general, however, as that adopted in the present formulation,

namely,

T = T + T* + TD (3.24)

but this is of no consequence to the theory of thermal activa-

26



tion which is based generally on experiments at strain rates
where TD is negligible compared with T1. In the constitutive

model, however, the activation energy is related to the mean

dislocation velocity - and hence to the strain rate - through

Eq. (3.10), where Ug, the glide velocity, is a function of TD

and vanishes when TrD = 0. Therefore, in this general context,

it may benecessary to retain the general stress decomposition

given in Eq. (3.24) in order to provide for a nonzero (but

perhaps small) viscous drag component TD in the thermal acti-

vation process. The need for using the general stress decom-
position becomes even more cute in the transition region where

the rate-controlling mechanism is shifting from thermal acti-

vation to viscous drag (see Fig. 1). In this region TD and T*

are of the same order of magnitude and the neglect of TD, im-

plied by Eq. (3.23), is clearly not justified.

G. Viscous Drag Stress Component

It is now generally accepted that when the applied stress

T becomes greater than the back stress TB' dislocations can

move along glide planes past short-range obstacles without
assistance from thermal activation. A considerable amount ofI

experimental evidence has been accumulated during the past
several years which indicates that the mechanisms governing

the dislocation motion under such conditions are viscous in

nature. Although the viscous-like mechanisms are rate-con-

trolling at high strain rates, they are also operative - and
dissipate energy - at the lower strain rates where thermal

activation is rate-controlling; their influence at these low

strain rates, however, is generally small compared with

thermal activation.

It is convenient at this point to introduce the term
"switch-over strain rate," which is defined as the (nominal)

strain rate at which the rate-controlling mechanism changes

from thermal activation to viscous drag as the applied stress
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is increased. For a relatively limited range of strain rates
above the switch-over strain rate, a linear dependence of the

applied stress on the plastic strain rate has been experimen-

tally observed in a number of metals.( 1 3' 3 2' 3 9 ) The results
of these studies can be correlated by an equation of the form

T - T = (3.25)B =np

where n is a coefficient which exhibits a slight dependence

on temperature. The form of Eq. (3.25) indicates that a vis-

cous-like mechanism is operative. Consequently, the disloca-

tion motion must be damped by some energy absorbing (dissipa-
tive) mechanism. Similar damping of dislocation motion has

been observed by a number of investigators. Some of these have

used ultrasonic methods and others have made direct disloca-

tion mobility measurements. The results of such investigations

aie typically discussed in terms of a drag coefficient B,

defined by the equation

F = Bu (3.26)

where F denotes the net force on the dislocation, and ug is the

dislocation glide velocity. During viscous motion it can be

shown that the net force F on the dielocation is given by

F = bTD (3.27)

where TD is the viscous drag component of the applied shear

stress. Combining Eqs. (3.26) and (3.27) leads to the follow-

ing result,

T Db = Bu 9(3.28)

which is compatible with Eq. (3.25) - inferred from macro-

scopic measurements - if we make the identification
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3 B (3.29)
n •b 2 N

m

It has therefore been confirmed by a number of different ex-

perimental approaches that the viscous drag on dislocations

is linear for strain rates above, but of the same order of

magnitude as, the switch-over strain rate.

On the contrary, very little is presently known regarding

the rate-controlling dislocation mechanisms at considerably

higher strain rates, say 104-_07 sec 1 . This lack of under-
standing is due, in part, to the paucity of direct experimental
data for metals deforming at strain rates considerably greater

than the switch-over strain rate. It seems reasonable, how-

ever, to expect that as the strain rate (or dislocation velo-
city) is increased, the viscous drag stress TD will begin to

exhibit a nonlinear dependence on the dislocation velocity.

Therefore, in the present work we shall generalize the result

given in Eq. (3.28) to include nonlinear viscous effects in

the following manner,

BH(TD) = B*u (3.30)

where 4 is a nonlinear function of TD, and B* is the general-

ized drag coefficient.

As the stress is increased, it seems likely that the

dislocation will eventually reach a limiting velocity. As a
(41-4 3)

number of investigators have shown, a screw dislocation,
for instance, cannot travel faster than the elastic shear wave

velocity due to limitations imposed by relativistic consid-

erations. Therefore, to make provision for relativistic ef-

fects at high dislocation velocities, the generalized drag

coefficient B* appearing in Eq. (3.30) will be taken in the

formt

tThis approach to including relativistic effects was first
suggested by Taylor( 2 3 ). For different ap-pioaches, see
Refs. 40 and 44.
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B*= B (3.31)

u1 u2/u 2

where B denotes, as before, the usual (linear) drag coefficient,

and u, is the limiting dislocation velocity. In the present

work, we shall assume that u. is equal to the elastic shear

wave velocity, Cs.

Upon combining Eqs. (3.30) and (3.31), we obtain the

expression

U - P(T D) (3.32)u = 1 ¢2 (TD)

C
2

S

which relates the dislocation glide velocity ug to the drag

stress TD for a specified function (D. In the work carried out

to date, we have found that a functional dependence of the

form

(P = a T + a T2 (3.33)
1D D

appears to be adequate. In this expression, aI and a2 denote

constants to be evaluated from experimental data. Note that

if we set

a =b (3.34)

Equation (3.32) includes the usual (linear) drag expression

given in Eq. (3.28) as a limiting case when TD becomes small.

H. Synthesis of the Constitutive Equation

In the foregoing sections, an attempt has been made to

review and discuss the various aspects of dislocation theory
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which have particular significance to plastic wave propagation.

Against this background, models of the necessary component

mechanisms, developed and adopted in the present study , were
presented. In this section, these notions will be synthesized

to form a constitutive equation. In later sections, procedures I
for evaluating the coefficients in this equation will be illus-
trated, and theoretical results based on the use of this con-
stitutive equation will be compared with experimental observations.

As pointed out earlier, the present constitutive model is

designed to treat the slip mode of plastic deformation and, when
plastic flow occurs by this mode, the plastic strain rate is

defined by the equation

4
Cp T bNmV (3.35)

Expressions for Nm and v, based on models of the various dis-

location mechanism developed in the preceding sections, will

now be combined according to Eq. (3.35) to form the constitutive

equation. In order to avoid having the following discussion
become overly complicated, we shall restrict attention to
initial loading at a fixed temperature.

The basic formulation is based on the concept that the
applied stress T may be decomposed in the following manner:

T =T + T* + TD (3.36)

where T* is the thermal component, TD is the viscous drag com-
ponent and T is the athermal component. The athermal component

is given by the equation

I = To•I + a(Ep)m (3.37)

The specific form adopted for the mobile dislocation density
Nm is
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I
Nm = Nm + (Nmo NmO + M ep)exp(-A1 ep) (3.38)

For the mean dislocation velocity, we have derived the following

resultT

u
v = 9 (3.39)

1 + 4WI exp(H/kT)

Upon combining the preceding equation with the expression for

the activation energy in the Seeger model for dislocation

intersection, namely,

H = H, - v*T* (3.40)

we reach the result

U
V = g(3.41)

1 + Slug! exp (- )

where we have set:

a = (1I)- exp(H0 /kT) (3.42)

Finally, the glide velocity Ug is taken to have the form

U = (3.43)
g -41 + 42

where the function 4 is given by

'"t has been assumed here that at a fixed temperature, only one
type of short-range obstacle dominates the deformation when
thermal activation is the rate-controlling mechanism.
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a T + a02T (3.44)

The preceding results may now be combined according to Eq.

(3.35) to yield the following expression for the plastic

strain rate:

bu [Nm. + (Nmo - Nm + Me 2 ) exp(-A~sp)]
p go MO TIF3.5

p I I su I exp(- -- -

where the general stress decomposition, Eq. (3.36), is implicit,
and ug is defined according to Eq. (3.43) and (3.44). Equation

(3.45) gives the forip of the constitutive equation developed
in the present work for initial loading. An inspection of this
equation reveals that it is of the general form

ýp = E(CpT) (3.46)

where the function ý depends in a nonlinear manner on both e

and T.

For those metals in which thermal activation does not play

an important role at a given temperature, the thermal component

T* may be neglected. When this is the case, the general con-

stitutive equation, Eq. (3.45), reduces to the following

simplified formt

4 b 0 [NmC. + (Nmo - Nm + M Cp) exp(-AeC)] (3.47)

p 3 + 3.7

TTo effect this simplification, the exponential function in
the denominator of Eq.(3.45) must be replaced by twice the
hyperbolic sine. This will account for the effect of thermal
fluctuations which oppose the applied stress at small values
of T (see Ref. 45).
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where now, since T* is being neglected, we have TD = T - T

therefore,

2

(T - + a (T - TV) (3.48)

with Tr defined according to Eq. (3.37). The constitutive

equation given in Eq. (3.47) has ten coefficients, namely,

a,m, 0 ,A ,M INmo ,Nm ca ,C and C., which require evaluation1 12

for a given material. We shall describe in Section Il of this

report the procedures which have been used to evaluate these
coefficients for 6061-T6 aluminum.

I. Reversed Straining from a Prestrained Plastic State for

Metals which Exhibit a Bauschinger Effect

It has been found experimentally that, under quasi-static

loading conditions, many metals exhibit mechanical properties

during reverse straining from plastically prestrained states

which differ significantly from those observed during initial

loading. For such materials, the shear stress required to
initiate plastic flow during reverse straining is smaller than

the flow stress at the end of the initial loading process; in
addition, the strain hardening rate during reverse straining
typically has a temporary increase over that present during
initial loading. Metals which exhibit such characteristics

follow anisotropic Ftrain hardening laws and are said to have

a Bauschinger effect.

A number of recent investigations(7',',1) indicate that

metals which show a Bauschinger effect under quasi-static

conditions also exhibit such an effect under rapid dynamic
loading conditions, such as occur during elastic-plastic wave
propagation. Other studies have shown that the Bauschinger

effect can exert significant influence on the shape of the

release wave and, consequently, on stress wave attenuation.(12)

When reverse plastic straining occurs under rapid dynamic

conditions--such as in the release wave during plastic wave
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propagation--the presence of strain rate effects and a large
hydrostatic component of stress can add further complication

to the reversed straining process.

Unfortunately, there is no experimental technique at the
present time whereby the separate effects of strain rate and

strain hardening (Bauschinger effect) can be isolated in the
release portion of a plastic wave. Despite the fact that some

insight into the separate influences of these effects can be

obtained in the loading portion of a plastic wave through
elastic precursor decay and steady wave analysis, such infor-

mation is not available for the release portion of the wave.
This results from the fact that the release wave is dispersive

(and therefore never attains a steady state) and the amplitude

of the elastic portion of the release wave, which exhibits

decay in a manner similar Lu Lhe precursor, is extremely
difficult to measure with any accuracy experimentally. Thus,

at the present time, there is no satisfactory experimental

method by which the separate influences of strain hardening

and strain rate effects on the release wave can be determined.
Only one investigation (Ref. 46) could be traced which even

remotely touched on this subject but, as the authors cautioned,
the results and conclusion given are not applicable to plastic

wave propagation phenomena where short recovery times are

involved.

Although a few attempts have been made to develop simple
dislocation models to explain the Bauschinger effect during
quasi-static unloading, it still remains as one of the least

understood areas of metal plasticity.* The task becomes even
more complicated for rapid dynamic unloading conditions where
strain rate effects may be present. In view of this, no attempt

For a discussion of the Bauschinger effect from the micro47)
mechanical viewpoint see, for example, the paper by Mott.
A recent attempt to develop a dislocation model for describing
the Bauschinger effect can be found in Reference 48.
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will be made here to construct a micromechanical model for the

reverse loading process during plastic wave propagation; instead,

a simple phenomenological model will be developed which ref. cts

a number of salient features observed experimentally in many
metals which exhibit anisotropic strain hardening.* Other

phenomenological models for describing the Bauschinger effect

have been proposed by Duwez,(49) Mroz,(s 0 ) Como and

D'Agostino,(51) and Barker.(11)

In the following portions of this section, the approaches

adopted in the present work for treating Lhe rate-independent

shear stress T , the mobile dislocation density Nm, and the

viscous drag coefficients a and a during a reversed straining
1 2

process from a prestrained state will be described.

The treatment of the rate-independent shear stress com-

ponent T., although phenomenological, is designed to reflect

the following salient features characteristic of the quasi-
static deformation of many metals having a Bauschinger effect:

1. Upon reverse straining from a plastically prestrained

state plastic flow begins at a shear stress whose
Smagnitude is smaller than that of the flow shear stress
at the end of the initial loading process.

2. After reversed plastic flow has been initiated, the
rate of strain hardening is much more rapid than dur-

ing the initial loading process.

3. In some metals, such as aluminum and copper, the

reverse strain hardening path rapidly approaches the
hardening path that would have been followed if the

material obeyed an isotropic hardening law.

The treatment of isotropic strain hardening is straightforward
and will not be discussed here.
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4. For metals which do not have a sharp yield point -

which is the case with most metals of practical

interest - the following continuity condition between

the elastic and plastic states

dr
pe (3.49)
p

holds at the onset of initial plastic flow, as well as

at the initiation of reversed plastic flow from a

prestrained state.(52)

In order to elucidate the present treatment of the shear

stress component Tr in greater detail, let us turn to Fig. 2,

where the dependence of T on e according to the present model

is schematically depicted. Initial plastic straining occurs

along the path a-b after the applied shear stress exceeds the

initial yield stress TO. The strain hardening path a-b is

described by some appropriate functional dependence of the form

T1 = f(C ) (3.50)

where the function f is taken in the present work to have the
specific form

f(p= roIl + a(ep)m (3.51)
p p

in accordance with Eq. (3.18). Point b represents the final
state reached during the initial loading process and, for
future reference, we will designate the plastic strain and

corresponding shear stress at this point, respectively by p
p

and T*. Between points b and c, elastic unloading takes place
which consists of a decrease in shear stress but no change in

the plastic strain. At point c, the shear stress TP has been

completely unloaded. Tf the applied shear stress is now
reversed, elastic loading takes place between c and d. At d,
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the material yields and then subsequently exhibits a rapid rate
of strain hardening, as shown. The following functional form
for T., which exhibits the four general features of the reverse
straining process enumerated above, has been adopted in this
study to describe the strain hardening path from d to e:

T o + (T' - TI) - (-6
pI oo

Here, T' denotes shear stress at which yield first occurs on
0

reverse straining, 6 is a coefficient which governs the rate
of strain hardening, and T', defined by the expression

TV =-To /+a(2*-c )m (3.53)
p p (.3

describes the strain hardening path that would be followed
during the reverse straining process if the material obeyed
an isotropic hardening law. Therefore, once the parameters
a, m, and T° have been determined for the initial loading path,
T' is completely specified; the additional parameters that
must be evaluated to complete the specification of this'model
are T0 and 6. The evaluation of these parameters from quasi-

0

static experimental data is described in Section IV.A.2 for

6061-T6 aluminum. An alternative model for incorporating a
Bauschinger effect into the general constitutive framework has

also been developed, and is discussed in the Appendix.

tAlthough 6 and TI are treated as constants in the present
model, they can be expected to depend in general on the
plastic prestrain.

ttin using quasi-static data to evaluate a strain hardening mod-
el for' use under dynamic conditions, it must be assumed that
the strain-rate effect influences only the dynamic flow stress
but not the actual quasi-static flow stress; clearly such an
approach involves some degree of approximation. Moreover,
the identification of T with the quasi-static flow stress is
permissible only when the thermal component of the shear
stress, T*, is negligible compared with T
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The mobile dislocation density during the reversed strain-
ing process is described in the present model by the following

expression

Nm = N'm + (Nm* - Nm ) exp(-A2) (3.54)

In the above equation, F denotes the reversed plastic strain,S~p
defined as

E= - C (3.55)
p p p

Nm* is the magnitude of the mobile dislocation density at the
end of the initial loading process; A and N' are coefficients2 mco2
which must be evaluated from experimental data. The functional
form for Nm given above maintains continuity in the mobile dis-
location density during reversal of the shear stresst, and allows
for saturation of the mobile dislocation density at a finite,

non-zero value.

Turning finally to the viscous drag shear stress component,

TD, it is assumed that, during a reversed straining process
from a prestrained plastic state, the glide velocity u is related
to TD in the same manner as that adopted for the initial straining
process (see Eqs. (3.32) and (3.33). Moreover, the viscous drag
coefficients a and a are taken to have the same values on
reversed straining as on initial straining. While this approach
assumes that the u -TD relationship is unaffected by plastic

prestrain, it does not, however, imply that the T- relationshipp
is lik3wise unaffected; even when the ug-TD relationship is the

tThe continuity assumption, made primarily for convenience, is
perhaps questionable from the standpoint of dislocation theory.
If one considers that the dislocations which have been immo-
bilized by piling up againrL obstacles in the microstructure
may be remobilized when the direction of the applied shear stress
is reversed, it seems likely that a discontinuity will exist in
the mobile dislocation density during shear stress reversal.
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same, changes in the mobile dislocation density between initial

and reversed straining lead to differences in the T-C P
relationship.
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tIV. EVALUATION OF THE COEFFICIENTS FOR 6061-T6 ALUMINUM

In this section, the constitutive equation developed in

the preceding sections will be applied to .6061-T6 aluminum at

room temperature. The constants in the constitutive equation

will be evaluated from the extensive experimental data available

forthis metal, in particular quasi-static stress-strain curves,

elastic precursor decay da'ta and plastic wave profiles.

We consider first a simplification which can be made in the

"general constitutive equation. Turning to Fig. 3, a plot of

some experimental data for 6061-T6 aluminum at room temperature,

obtained by Isbell,et al.,(6) shows the effect on the com-

pressive axial stress of changing the strain rate from 5 x 10-3

to 103 sec 1 t. An inspection of this figure reveals that there

is essentially no change in the stress for an increase in the

strain rate of about a factor of 106; this clearly demonstrates
that within this range of strain rates the material is strain-

rate insensitive. It is in the range of strain rates from 10

to 10' sec-1, however, where one would normally expect thermal

activation to be the rate-controlling mechanism; but, inasmuch

as no rate sensitivity is observed, it appears that T* may be

very small compared with T . This is further confirmed by

noting in Fig. 3, that a change in the strain from plastic yield

to 6% resulted in a substantial increase in the stress. The

flow stress, therefore, appears to be dominated in this range

of strain rates by the athermal component T . In view of this

it appears that the thermally activated stress T* is very

small compared with T and can be neglected, and wce shall there-

fore adopt the simplified constitutive equation** given earlier

in Eq. (3.47).

tThe data shown in this figure were obtained under uniaxial

stress conditions and are consistent with the data in Ref.53.

Such a simplification is not likely to be possible at higher
temperatures where the thermally activated component T*
exerts more influence on the plastic flow process.
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A. Strain Hardening

When the shock loading of a metal is carried out under

uniaxial strain conditions, attempts to make direct experi-

mental measurement of the strain hardening characteristics

are complicated by the presence of strain rate effects and

rarefactions. Because of these apparently unavoidable feat-res,

there is, to date, no satisfactory technique for measuring in

a direct manner the strain hardening properties of a metal in

uniacial strain during shock loading. Such data, if it could

be obtained, would obviously be of interest to those concerned

with developing constitutive models for plastic wave propagation

in metals. In the absence of such data, it has been customary

in the past to either neglect strain hardening effects altogether,

or to construct hardening models for use in one-dimensional

(uniaxial strain) codes from hardening data obtained from

uniaxial stress tests carried out under quasi-static conditions.

It has been recognized for some time, however, that shock

loading produces a different amount of strain hardening in

metals than quasi-static loading, when the two are compared

on the basis of equal plastic strain.

When hardening data obtained from uniaxial stress tests

are used to construct hardening models for uniaxial strain, it

becomes necessary to invoke some assumptions regarding the

general hardening law, so that the hardening characteristics

measured in uniaxial stress can be transformed to those in the

uniaAal strain configuration. For this purpose, some isotropic

form of strain hardening, in which the radius of the yield

surface increases with either the plastic work or the gen-

eralized plastic strain, has been adopted in most cases in

the past. The required transformation of the strain hardening

properties is then effected through a procedure originally due

to Fowles.( 5 4 ) The assumption of isotropic hardening, which is

implicit in Fowles' procedure, provides considerable analytical

and computational convenience. However, many (if not most)
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metals exhibit to some degree a Bauschinger effect on reverse

loading from a plastically prestrained state and when this is

the case, the strain hardening is not of an isotropic nature.

For such materials the procedure suggested by Fowles is not

appropriate, and some other method for transforming the harden-

ing data is required. The procedure adopted in the present

work for this purpose is described in that which follows.

As noted earlier, it has been assumed that the major por-

tion of the plastic flow occurs on those slip planes for which

the resolved shear stress has its maximum value, regardless of

whether the deformation occurs under conditions of uniaxial stress

or uniaxial strain. Moreover, it will be assumed that an expres-

sion of the form i
S= F(y) (4.1)

relates the maximum shear stress T to the corresponding plastic

strain y in both theuniaxial stress anduniaxial strain config-

urations under quasi-static conditions. By making use. of the

result

S= p (4.2)

given earlier, Eq. (4.1) may be rewritten in the form

T = F( p) (4.3)

where s may denote either the plastic strain component in the

direction of the axial stress in auniaxial stress configuration,

or the plastic strain component in the direction of the only non-

vanishing strain component in a uniaxial strain configuration.

Thus, on the preceding assumption, the function F is identical

in both theuniaxial stress anduniaxial strain configurations,

and it may be determined for a particular material from quasi-

static uniaxial stress data. In the case of 6061-T6 aluminum,
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the athermal stress, T., may be equated to the applied flow

stress T for quasi-static loading at room temperature since

rate effects can be neglected and r* is small compared with

T . Therefore, under these conditions, Eq. (4.3) reduces to

the expression

T11 = F( p) (4.4)

which will be used here to describe the strain hardening

characteristics of 6061-T6 aluminum.

1. Initial Strain Hardening and the Coefficients a, m, and To

The particular form of Eq. (4.4) adopted in the present

work for initial plastic straining is, from Eq. (3.18),

= 1 /l+a(sp )m (4.5)

where T is the initial yield stress, and a, m are coefficients.

In the evaluation of TO, a and m, the experimental results of i

Maiden and Green(55) have been used. These data, reported in

terms of engineering definitions of stress and strain, were

transformed to true stress and natural (logarithmic) strain

for use in the present work; the results so obtained are pre-

sented in Table I, where both stress and strain are taken as

positive in compression.

Let us now consider Eq. (4.5), which may be solved for the
coefficient m to give

m 0 (4.6)

where the subscript o has been omitted from T, since the

athermal component TI is equal to the applied flow stress T,

according to our discussion above. Inasmuch as the initial

46

LI



conditions, and the material was first compressed quasi-statically

to a prescribed strain, unloaded and then immediately subjected

to quasi-static reverse loading under tensile stress. The

results from these tests on 6061-T6 aluminum indicated the

existance of a pronounced Bauschinger effect, in accordance

with the observations of others.. 8 ' 1 2

To evaluate the coefficients T' and 6 in the present model,
0

the experimental data, originally reported in terms of axial

engineering stress versus engineering strain, were transformed

to true shear stress T versus natural strain c in the usual1
manner. The results so obtained are depicted in Fig. 7. An

inspection of the experimental curves in this figure will reveal

that the material does not have a well defined yield point for

reverse loading. In this case, of course, a yield point can be

prescribed by some criterion--such as 0.2% offset from the

elastic path--but, inasmuch as this is arbitrary, it was decided
simply to assume that plastic flow begins on reverse loading

when the shear stress is zero. In Eq. (3.52) we thus set

S: 0 (4.11)
0

In order to make a direct comparison with the quasi-static

experimental reverse loading curves, the present model was

specialized to uniaxial stress conditions by setting

2T

-C 2T (4.12)

in Eqs. (3.52) and (3.53), and by identifying T P as the quasi-

static flow stress, T.ý Under these conditions, Eq. (3.57)

takes the form

T = T' [l-exp(-6/c*-c + 2(4.13).Pp T

tSuch an assumption is justified in the case of 6061-T6 aluminum
at room temperature since the thermally activated stress coin-
ponent, T*, is small compared with Tr
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The experimental data have also been plotted in terms of(/o2- vess 0•).5
[(T/T versus (ep 5, as shown in Fig. 5. As an inspection

of this figure will reveal, the data fall along a straight line,

the slope of which is 2.50. Therefore, in view of Eq. (4.8),

we have

a = 2.50

For initial plastic straining in 6061-T6 aluminum at room

temperature, the athermal component T can thus be described

by Eq. (4.5) with the following values of the coefficients:

= 1.39 kbar0

a = 2.50 (4.9)

m =0.5

The extent to which this model correlates the experimental data

for 6061-T6 aluminum presented in Ref. 55 is shown in Fig. 6.

To accomplish this, the expression for T , given by Eq. (4.5)

with the coefficients listed above, was recast in terms of

engineering definitions of stress and strain, and then combined

with the following equations for uniaxial stress conditions,

where Y denotes Young's modulus,

c= 2T 
(4.10)

C 1= + Sp

to produce the results shown. An inspection of Fig. 6 will

confirm that the present model for initial strain hardening

correlates the experimental results very well.

2. The Bauschinger Effect and the Coefficients 6 and T6

The reverse loading paths for 6061-T6 aluminum were experi-

mentally determined for a range of plastic prestrains by

Babcock.( 6 ) The experiments were performed under uniaxial stress
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conditions, and the material was first compressed quasi-statically

to a prescribed strain, unloaded and then immediately subjected

to quasi-static reverse loading under tensile stress. The

results from these tests on 6061-T6 aluminum indicated the

existance of a pronounced Bauschinger effect, in accordance
with the observations of others.%8 ' 1 2 )

To evaluate the coefficients T' and 6 in the present model,
0

the experimental data, originally reported in terms of axial

engineering stress versus engineering strain, were transformed

to true shear stress T versus natural strain e in the usual1

manner. The results so obtained are depicted in Fig. 7. An

inspection of the experimental curves in this figure will reveal

that the material does not have a well defined yield point for

reverse loading. In this case, of course, a yield point can be

prescribed by some criterion--such as 0.2% offset from the

elastic path--but, inasmuch as this is arbitrary, it was decided

simply to assume that plastic flow begins on reverse loading

when the shear stress is zero. In Eq. (3.52) we thus set

T' =0 (4.11)
0

In order to make a direct comparison with the quasi-static

experimental reverse loading curves, the present model was

specialized to uniaxial stress conditions by setting

'I
= C - (4.12)£p Y 7-

in Eqs. (3.52) and (3.53), and by identifying TP as the quasi-

static flow stress, T.ý Under these conditions, Eq. (3.57)
takes the form

T = T' [1-exp(-6/c*-c + 21 (4.13)S[p i Y "

WSuch an assumption is justified in the case of 6061-T6 aluminum
at room temperature since the thermally activated stress coin-
ponent, T*, is small compared with TU
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where we have set r' 0. Equ,'tion (4.13) is a transcendental
0

equation which may be solved to give T as a function of e for

a prescribed value of 6. Using this approach, it was found that

the best agreement with the experimental data was obtained for

6= 20 , (4.14)

which actually represents a compromise of the best fit values

for the three experimental paths shown.

A comparison between the reverse loading paths determined

by the present model, using T' = 0 and 6 = 20, and those deter-
0

mined experimentally for several values of plastic prestrain

is given in Fig. 7. Here, it is seen that tha reverse loading

paths predicted by the present model are in excellent agreement

with the experimental results, except perhaps for the smallest

plastic prestrain, where there would be more uncertainty in

the data. For the purpose of depicting the differences between

the present (anisotropic hardening) model and an isotropic

hardening model, the reverse loading path for an isotropic

model has also been included in Fig. 7 for 0.03 prestrain.

B. Elastic Precursor Decay and the Coefficients a ,c , and N1 mo

In order to obtain insight into the dependence of the strain

rate on the viscous drag stress TDO it is advisable to perform
experiments in which the strain rates are high but complications

introduced by the processes of dislocation multiplication,
strain hardening, and thermal activation are minimized. As was

recognized by Duvall,(56) the decay of the elastic precursor
wave provides information of just this sort.

In materials for which the elastic Hugoniot stress-

engineering strain relationship has positive curvature, the
precursor wave is an initirily unsteady shock, moving at a

slightly supersonic velocity U relative to the stationary material
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ahead*. Denoting by u the particle velocity, the velocity of

the wave relative to the material behind it, namely, U-u, is

correspondingly slightly subsonic; as a result, signals emana-

ting from behind the elastic wave fronL are. able to overtake it.

It was shown by Ahrens and Duvall,(58) and later by Herrmann,(')

that the stress decay at the elastic wave front under these

conditions is given by Da /Dt, wheret

Da 1 [A 1 21p] (4 .15)

In this expression, the quantities A and B are defined as

(U-u) 2 -

A - U-u (4.16)

2 2 (U-u) 2

where CL denotes the longitudinal elastic wave speed immediately

behind the elastic shock, and (a 1/ax) represents the stress

gradient at this point. The first term on the right side of

Eq. (4.15) represents a correction due to signals originating

from the region of the plastic wave behind the elastic front,

and it is the result of having a nonlinear elastic Hugoniot.

The second term on the right side of this equation arises from

visco-plastic relaxation of the material at the elastic front.

The special case of a linear elastic Hugoniot simplifies

Eq. (4.15) considerably, since the elastic shock is then exactly

In materials having a negative elastic Hugoniot curvature,
e.g., fused quartz, the precursor wave is a compression fan and
Eq. (4.15), which is based on the jump conditions across a flow
discontinuity, does not apply.

tThe symbol D/Dt denotes the time derivative following the elastic

precursor.
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sonic. From the jump conditions and the characteristic flow

equations,(56) or from Eq. (4.15) with CL = U-u, one has in

this case

Do

or

Da
1 L P (4.17)

The plastic strain rate p can, in general, be described in the

manner p (T,, ); )but, at the elastic precursor, we have
p p. p

Ep 0 so that depends only on the shear stress T. With this

in mind, and making use of the elastic relation for uniaxial

strain, namely,

T = a (4,18)
+4 1

Equation (4.17) can-be integrated at once for x as a function of

a . Since the departure of the elastic Hugoniot from linearity

is quite small for most metals at low stress levels, the

linearized precursor decay equation, Eq. (4.17), may give a

reasonable approximation to the more general equation, Eq. (4.15),

except possibly during the early stages of the decay when (ao /ax)I

behind the precursor wave can be large. Indications that this is

in fact the case were obtained in the present study, as described

below.

An inspection of Eq. (4.15) reveals that it is ursuited

for computational purposes, since the first term or tie right

side can only be determined by calculating the entire flow field.

Consequently, if one is to include the effects of a nonlinear

elastic Hugoniot, it becomes necessary to resort to numerical

methods. Johnson and Band( 5 8 ) have discussed the use of finite-

difference methods for solving the flow equations for stress-

relaxing solids, with particular reference to the precursor wave.
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They have shown that finite-difference methods can in fact be

utilized to study precursor decay, but that certain features of

the method must be taken into consideration. First, the finite-

difference solution tends to oscillate behind the elastic shock

front; it is customary to, stabilize these oscillations, which

are of numerical origin, by-incorporating a small linear arti-

fical viscosity term into the numerical scheme. The addition

of such a viscosity term inevitably obscures to some extent the

visco-plastic response of the material being analyzed, partic-

ularly in the vicinity of the elastic precursor. In the second

place, the precursor cannot br. treated a.s discontinuous in the

finite-difference approach; it has a finite rise time and, at

the top of the wave, significant amounts of dislocation multi-

plication and plastic strain may therefore have occurred. The

dislocation multiplication tends to increase'the precursor decay

rate, while the stress relief accompanying the plastic strain

tends to reduce it. These effects are apparently unavoidable

in finite-difference solutions, and clearly have some influence

on the calculated decay rate.* Both 3f the limitations on the

finite-difference method noted above can, however, be minimized

to some extent by using a small mesh size (Ax,At) and by judic-

iously selecting the artificial viscosity to minimize oscillations

behind the precursor.

The linearized precursor decay solution, which has a dif-

ferent type of limitation than a numerical solution, is trivially

easy to determine by integration of Eq. (4.17), and can also be

After the completion of the present work, Herrmann, Hicks and
Youna( 5 9 ) reported the results of an investigation in which the
use of finite-difference methods for calculating elastic precursor
decay was studied. Particular emphasis was given in this inves-
tigation to the effects of dislocation multiplication and finite
shock thickness on precursor decay. The results obtained indicate
that, under certain conditions, the artificial viscosity method
may lead to unrealistic precursor decay which is significantly
influenced bv the numerical scheme employed.
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of considerable aid in evaluating coefficients. At the elastic

precursor where E = 0, the constitutive equation developed in

the present work reduces to the following form:

4 b4Nmo
- (4.19)E1 + 0--•

Here, we have

= a (T - T0 ) + a (T - T )2 (4.20)
1 0

since both T and T are evaluated at zero plastic strain. Upon

combining Eqs. (4.18) through (4.20) with Eq. (4.17), one

obtains a differential equation of the form

Da
= F(a) (4.21)

which can be solved to give the decay of the Hugoniot elastic

stress with distance of propagation x. Such a procedure has
been followed in the present work to obtain initial estimates

of a and a , and for this purpose the experimentally determined
1 2

precursor decay for 6061-T6 aluminum reported in Ref. 6 was

used.

At this point, it should be noted that, in the absence of

dislocation mobility data for 6061-T6 aluminum, it becomes

necessary to make some assumption concerning the initial mobile

dislocation density Nmo. To this end we have assumed

N = 10cm- 2  (4.22)
mo

which is of the same order of magnitude as that adopted in Ref.17.

After initial estimates of a and a had been obtained by
2

the procedure described above, further refinements were made

in these coefficients through numerical studies carried out on
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the, finite difference RjP code, using-the complete constitutive

equation. In these studies, very fine zoning was used

(Ax Z5x]0 4 cm), and only sufficient linear artificial viscosity

was employed to dampen out small spurious oscillations of

numerical origin, which occur immediately behind the precursor

when no artificial viscosity is used. The values of the coef-

ficients a and a which gave the best fit to the experimental

precursor decay data were found to be

a = S6x×lO 3 cm/sec/kbar
1

(4.23)
a = £.0x105 cm/sec/kbar 2

2

Some numerical experimentation was done to determine to

what extent the computed precursor decay curve depended on the

numerical features, such as the zone size and the computational

time step. From the results obtained, it was found that changes

in the zone size by a factor of three, and in the time step by

a factor of two, had a detectable, but not significant, effect

on the calculations,

A comparison of the precursor decay calculated by the finite-

difference RIP code (using the values of a and a given above)1 2 (6
with that determined experimentally by Isbell,et al.( 6 ) is shown

in Fig. 8. In both the calculations and the experiments, the

initial elastic impact stress was 20 kbar. It may be noted that

the computed precursor decay curve passes through all six of the

experimental data points. Although very fine zoning was used,

the precursor amplitude could not be accurately determined in the

RIP code calculations for propagation distances less than 0.025

cm;* because of this, a dotted line has been used to indicate

By restricting attention to the region 0 < x < 0.05 cm, and
using finer zoning, the initial stage of Frechrsor decay could
be more accurately determined; this was not attempted here,
however, due to the absence of experimental data within this
region.
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(approximately) the shape of the decay curve in this region.

Also shown in Fig. 8 is the precursor decay curve calculated

from the linearized theory, Eq. (4.17), using the values of a

and a given in Eq. (4.23). From this figure, it is seen that2

for propagation distances greater than about-0cLQ cm, the decay

curve predicted by the linearized theory essentially coincides

with that determined with the RIP code.

Parenthetically, it is of interest to note that the experi-

mental data shown in Fig. 8 were obtained from specimens of

6061-T6 aluminum which had original stock thicknesses of either

0.32 or 0.64 cm. As shown by Isbell,et al.,(6) the precursor

decay for other stock thicknesses varies to some extent from

that depicted in Fig. 8 due, most likely, to the different

amounts of cold work accumulated during the rolling process.

C. Steady Wave Analysis and the Coefficients Al , M, and Nm,

One of the methods available for study of the dynamical

characteristics of a material is the analysis of steady waves,

for which the flow equations can be easily integrated. The

observed characteristics of the flow can therefore be related

to the properties of the material more easily than in the case

of a general unsteady flow situation.

Analyses of steady shock waves were presented by Band,(60)

and further discussed by Band and Duvall.(61) They showed how

the analysis could be used to relate observed wave velocities

for shocks of differing strengths to the viscous dissipation

rate of the material, so that a mean viscosity parameter could

be determined.

More recently, with the development of laser interferometry,

a more refined application of steady wave analysis has become

possible. The interferometer essentially gives the velocity of

a material interface or free boundary, due to an incident wave,

as a function of time. From this information, together with

some knowledge of the dynamical properties of the materials
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involved, the profiles of particle velocity, stress and strain

within the incident wave itself can be inferred. If the observed

interface velocity profile is essentially steady, as determined

by repeated observations at different interface positions, Band's

analysis can be applied to the determination of the detailed

form of the viscous dissipation function. The analysis requires,
in addition to the interferometer data, a knowledge of the elastic
constants, quasistatic strain hardening behavior, and shock hydro-

stat of the material. It also requires, as a practical matter, a

constitutive model for the viscous behavior which contains several

adjustable parameters. Some of these parameters can be deter-
mined by other techniques, such as the analysis of precursor

wave decay, but the dislocation multiplication parameters, such

as A , M and N in the present model, can best be found from

the analysis c, the steady wave profile.

Steady wave measurements in 6061-T6 aluminum suitable for
this approach were d-scribed by Barker(II) and analyzed by
Johnson and Barker(17) in terms of a specific constitutive model.

In the present study a different constitutive model is proposed,

and more data relating to the shock hydrostat, precursor decay
and strain hardening have become available. The data presented

in Ref. 11 were therefore reanalyzed as described below. The

method employed is basically similar to that presented in Ref. 17
but incorporates some refinements which are believed to be justi-

fied by the currently available information on the material.

1. Theory Underlying Steady Wave Analysis

In this section the dynamical characteristics of steady

waves are reviewed. The following equations describe one-
dimensional plane flow:*

In Sections IV.C.I and IV.C.2 the symbol a refers to the stress
component al in the direction of the only nonvanishing strain
component. For simplicity, the subscript I has been omitted
in these sections.

61



dp Du
Continuity: H + pj- = 0 (4.24)

Motion: pdu + L= 0 (4.25)

Energy: P dE + P°dV + (4.26)

where

d + UTt Tt+ TX_

represents the substantive derivative along a particle path,

a the total longitudinal stress (positive in compression), u

the particle velocity, q the longitudinal heat flux, p the den-

sity and V = 1 the specific volume. These equations may also
P

be written in conservation form as follows:

ap + 7x (Pu) = 0 (4.27)

F T5(pu) + (pu + a) =0 (4.28)

7- (pE + ½pu') + 7 (½pu 3 + puE + ua + q) = 0 (4.29)

This set of equations is covariant under the Galilean trans-

formation

t'= t u' u U p' = p q' = q (4.30)

x' =x -Ut E' = E'=E

where U, is a co.stant.
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A "steady wave" may be said to exist within a space-time

region when a unique wave velocity U can be found such that in
the moving reference frame defined by Eq. (4.30), the time

derivatives of the densities of mass, momentum and total energy

vanish:

t = 0 ; pu = 0 ; a (P'E' + hPIu) 0 (4.31)

It follows from Eqs. (4.27) through (4.31) that between any

pair of states A, B within the steady-wave region, the follow-

ing relations hold:

PA(uA - -PB(uB U) = M (4.32)

PA(UA - U)2 + A= PB(uB - U)2 + GB (4.33)

3 E3 ( . 4PAN A U) - + N + PAEA) NuA U) + qA = hpB(UB - U) (4.34)

+ (oB + PBEB) CuB - U) + qB

where M denotes the constant mass flux through the steady wave.

These relations define invariants within a region of unsteady

flow, in contrast to the Rankine-Hugoniot jump conditions to
which they are analogous. For the special cases in which

either (i) states A and B are themselves states of steady flow,

or (ii) states A and B delimit a flow discontinuity, with

XA = XB, the steady wave relations Eqs. (4.32) through (4.34)
can in fact be identified with the Rankine-Hugoniot equations.

From Eqs. (4.32) and (4.33) it follows that

aB -a A = M2 (VB - VA) (4.35)
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so that any pair of states within the wave must lie on a unique

straight line in the stress-volume plane. This is termed the

"Earnshaw relation" by Band and Duvall. 6 1 ) It is the analog

of the "Rayleigh line" in fluid mechanics, and is also (perhaps

improperly) called by that name. From Eqs. (4.32) and (4.34)

one can write the analog of the "Fanno line":

EB + aBVB EA-AV ~½2( - -2 (qB qA) (4.36)

Additional relations may also be written, such as

EB "EA +½(aB + A) (VB-"VA) 1 q A.=0 (.7
ý(G +a qA)(4.37)

EB -EA - OA(VB VA) + ½M+ (V - VAB (

EE -2 (q qA) (4.38)

A 2M2

The first of these'is the analog of the Hugoniot equation.

All of the above Eqs. (4.32) through (4.39) are valid between

any two states A, B on a steady wave profile.

The remaining equations which govern the flow are the

equations of state, the equation of heat conduction, and the

general quasilinear constitutive relation

1 do 1 dV
*(o,E,V) • + *(a,E,V) = - V (4.40)

where the first term on the left side represents the "instan-

taneous response" strain rate (elastic or elastic-plastic

behavior), the second term the dissipative strain rate (visco-

plastic behavior), and the right side the total strain rate.

This relation includes as special cases the viscous fluid, the

elastic-plastic solid, and others in addition to the elastic-

viscoplastic solid which is the case of present interest.
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The elastic modulus * is determined by the elastic equation of

state:

*(C,E,V) = -V(aa/lV) (4.41)

For a steady wave moving with velocity U, Eq. (4.40) may

be written

1 aa +(aEV) 1 av (4.42)
ý(5,Vy Wx u-U V _x

The variables u and a may be elijninated with the aid of

Eqs. (4.32) and (4.35), giving as the result Bandvs differential

equation:

( M2 y-M ay - ,__ = x (a,E,V) (4.43)

where a is to be evaluated in terms of V and the initial condi-

tions at some prescribed state within, or on the boundary of,

the steady wave region. If ý and * are independent of E, this

equation may be integrated at once for the wave profile V(x).

This can also be done if the heat flux q can be neglected, by

using Eq. (4.38) to evaluate E in terms of V. It will-be

assumed that the heat flux q is in fact negligible for wave

profiles wide enough to be resolved.(53) The alternative

assumption, that 4 and ý are independent of energy, is not as

well justified, although if shock Hugoniot data are employed

as reference states in the representation of the state equation,

the errors are in general small.

For a wave which loads the material in compression, our

sign convention would lead one to expect 4i(a,E,V) to be non-

negative throughout the wave profile. This also follows from

the Second Law, if $ is for example proportional to a -euequil"

Since M and 3V/3x have opposite signs, it follows from

Eq. (4.43) that throughout the wave profile

M2V <•4(a,E,V) (4.44)
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Since p = 0CL 2 , where CL is the effective longitudinal sound

speed, this implies that the steady wave velocity must be sub-
sonic with respect to states within the wave. All parts of

the wave can then intercommunicate, adjusting their stress and
density with the aid of the dissipative mechanism so that each
state falls on the same Rayleigh line.

The steady wave region itself, within which Eq. (4.43)
applies, must be bounded by states of constant flow, in which

V/ax= 0 and p = 0, or by a flow discontinuity. The former

case occurs for weak waves, which are the cases of present
interest. It is apparent from Eq. (4.43) that the x coordinates
of the boundaries of the flow are infinitely removed from any

point in the interior of the region. As a practical matter,
the solution of Eq. (4.43) need not of course be extended beyond

points where i is negligible. It should also be remarked that
such weak waves are not properly termed shocks since they are,
throughout their extent, subsonic. Stronger waves may, of

course, be true shocks, in which case the wave profile would
be expected, by the arguments of the preceding paragraph, to

have a discontinuous head at the point where the equality sign

holds in Eq. (4.44). The tail portion of the wave would still
have a width described by Eq. (4.43).

The Band differential Eq. (4.43) itself is of the simple

type in which the independent variable does not explicitly
appear, and can be integrated by any numerical quadrature

method for x as a function of V.

2. Conditions for Existence of Steady Waves in Metals

The equilibrium stress-strain relation for a typical
elastic-viscoplastic metal is schematically illustrated in
Fig. 9. (Some of the features of the actual relation are
considerably exaggerated for clarity.)
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The section OQ in Fig. 9 follows the Hugoniot, which
below the static yield point P is purely elastic in character.

Above 3 the Hugoniot has negative curvature for some distance
due to the yield process. The Rayleigh line from the origin

is tangent to this yield path at Q, generally very near to P.

Above Q the equilibrium path follows an isentrope QAC. At C,
the curvature of this isentrope becomes positive, and the

equilibrium path follows a modified Hugoniot CBR which can be

constructed as follows. At any point B on the segment CBR, a

Rayleigh line BA can be drawn tangent to the isentrope at A.
The point B must then also lie on the Hugoniot centered at A.

These two conditions suffice to determine VB, VA and aB" Above

R (the Rankine point) the equilibrium path follows the Hugoniot

centered at 0. The path constructed in this way coincides with

the static path only below point C; above C it is just the

locus of equilibrium states accessible to a system containing

steady waves, i.e., one in which transient waves have essentially
disappeared.

The wave structure corresponding to this construction is
easily described. For wave systems with maximum stress above

point R (about 140 kbar for aluminum) a single shock develops.

For weaker waves, a two-wave structure appears, eventually con-
sisting of a steady elastic precursor wave in which the internal

states lie along a Rayleigh line OQ, and a steady "plastic wave"

in which the states lie along a Rayleigh line such as AB.
Between these is a compression fan, in which the states lie on

the isentrope QA. This dispersive section of the wave system

is relatively unimportant in the interpretation of the observed

wave profiles (it extends over a stress increment of 0.25 kbar

or less for aluminum).

Before the steady wave structure is stabilized, the wave

structure is determined by a dynamic yield path such as PS in
Fig. 9. The upper portions of this path appear to relax more

rapidly than the lower portions which are already closer to
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the equilibrium path, as evidenced by the early stabilization

of the shape of the upper portions of the plastic wave. A

true/steady wave does not exist in any part of the profile

untl'l the entire yield path has relaxed to its equilibrium

position, however.

The range of wave strengths for which this steady-wave

profile analysis is at present feasible is rather restricted,

being limited above by the resolution of the interferometer

and below by the conditions under which a steady uniaxial wave

can be established in the laboratory. For waves generated by

impacting the end of a bar, the dynamic yield surface must

essentially complete its relaxation before the arrival of

lateral unloading waves which distort the uniaxial strain

states.

Three wave profiles suitable for analysis are presented

in Refs. 11 and 17. Of these three profiles, Shot 926 (90 kbar)
Sis at th limit o-resolution of the interferometer, adSo

939 (21 kbar) is apparently not yet quite steady in the lower

third of the profile, as noted in Ref. 17.

A. Aplication to the Present Constiutive Model of 6061-T6
Aluminum

It follows from Hooke's Law, the assumption that the

plastic flow is incompressible, and the assumption that total

strain is uniaxial, that the constitutive equation must have

the form

a + 2=( • + ' (4.-•)

wher dP+

dP (the bulk modulus) is obtaired from an equation of

state, which for 6061-T6 aluminum was taken in the form given
later on in Sec. IV.E. Equation (4.45) conforms to Eq. (4.40)

if one identifies e with the right side of Eq. (4.40), the
longitudinal elastic modulus with •:
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dP 4

and the dissipative part of the total strain rate as

2*a

c p

By Eqs. (2.1), (3.4) and (3.11), this quantity p depends on

the dislocation multiplication parameters A, M and Nm.O as

follows:

S8 bv N + (Nmo - Nm + M 0) exp(-Ae1l (4.46)

A series of steady wave profile calculations were carried
out in order to establish best values for the constants A,

I

M and Nm• in this expression to fit the data for shots 926,
927 and 939. The quartz-aluminum interface velocities obtained

from analysis of the oscillograph fringes were transformed to

incident-wave aluminum particle velocities using an elastic-

plastic model for aluminum and elastic data for quartz by

Johnson and Barker. (17) The transformed data and the steady-

wave calculations with

A = 180
-

M = 2 x 1013 cm (4.47)

Nm• = l0o cm-2

are shown in Fig. 10. The quoted values of A, M and N

represent a compromise of the best-fit values for the three

shots. The dependence of the wave shape on these parameters

is rather strong, so that a 5% change in either parameter

would yield significantly poorer overall agreement with the

data. The difference between these results and those of Johnson

and Barker(1• can be attributed mostly to the use of different

models for viscous drag and strain hardening, and to the use
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Figure 10. Comparison of calculated and observed particle
velocity histories in 6061-T6 aluminum.
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of different data for the equation of state. The inclusion

of energy dependence in the calculation had only a small effect

on the shape of the profile. Finally, in these calculations

the Rayleigh line was taken tangent to the strain-hardened

yield locus at the lower end, while Johnson and Barker took

it through the initial yield point. This modification had a
definite effect on some of the calculations, particularly on

wave velocities and the shape of the low portion of the plastic

wave.

D. Release Waves and the Coefficients A2 and No

Earlier in Sec. III.Ithe expression adopted in the present

work for describing the mobile dislocation density during
reverse loading from a plastically prestrained state was given

as

N = N' + (Nm,-N' ) exp(-A ) (4.48)m mm 2 P

where each of the symbols has beep previously defined. This

expression has two coefficients, A and N' which must be'2 m•

evaluated from experimental data and, to accomplish this, the

following approach was followed here.

An impact problem, previously investigated experimentally
(11)by Barker, was selected for the purpose of evaluating the

coefficients A and N' In this problem, reported as shot 927
2 mp l

in Ref. 11, a 0.650 cm 6061-T6 aluminum flyer plate impacted
a target of 1.223 cm 6061-T6 aluminum backed by fused quartz

at a velocity of 4.81xl14 cm/sec. Because of the geometry, the

release wave in this problem traveled a relatively long distance

(about 1.9 cm) without attenuating and, thus, had an opportunity

to develop considerable structure.

A series of numerical calculations was performed on the

RIP code for the above problem by varying the values of A and2
N' in the present constitutive model for 6061-T6 aluminum. In
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these calculations the constitutive equation for fused quartz

(silica) recently reported in Ref. 62 was used. Successive

changes were made in the values of A and N' until a satis-2 m

factory level of agreement had been achieved between the com-

puted and the experimental release wave profiles; after several

iterations, it was found that the following values for these

coefficients

A = 1.2x10
2 (4.49)

N' = 5x10 7 cm-2
m. 

c

resulted in a calculated release wave profile which agreed

reasonably well with the experimental data.

A comparison of the results computed using the present

constitutive model and the above values for A and N' with
2 mo

experimental data from Ref. 11 is depicted in Fig. ll.* Here,

the particle velocity-time history at the aluminum-fused quartz

interface is shown. For the purpose of comparison, the cor-

responding computed results for the simple elastic-plastic

model and for the present constitutive model with rate effects

removed on unloading have also been included in this figure.

By comparing the release wave profiles for the various models,

some indication of the influence that the Bauschinger and

strain rate effects have can be obtained.

The numerical results shown in Fig. 11 for the various

constitutive models were all obtained for the same zone size,

as well as for the same form and magnitude of artificial vis-

cosity. The differences which are apparent between the results

for the various models are thus of physical origin, and reflect

To make this comparison, the experimental data was shifted
very slightly (about .05 psec) to the right along the horizontal
time axis in Fig. 11 in order to obtain agreement between the
computed and the observed arrival time of the elastic precursor.
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the basic differences in the dynamic response characteristics

of these models.

Finally, an inspection of Fig. 11 reveals that the present

constitutive model with a Bauschinger effect, but no rate

effects, on unloading gives satisfactory results; only a small

improvement in the release wave profile was obtained when strain

rate effects were introduced. It is believed that further

improvement in the agreement between the computed and observed
results could be obtained, however, with additional effort.

E. Summary of Constitutive Model of 6061-T6 Aluminum

In summary, it appears that thermal activation does not

play an important role in the room temperature deformation of

6061-T6 aluminum and may be neglected. In this case, the system

of equations that describes the present constitutive model of

this material is as follows for uniaxial strain conditions:

S4 bNm1

= p

3
T = P(C--2 E: )

a P + v T (4.50)

P : f(p,E)

E= kn (p/p)

where the symbols N m are defined as
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a cI (T - T ) + ai 2 ( - T 1
SI ) 2 " P)

(NmC + (N - NmC + M C2)exp(.-A, for initial
N +N° N1 p P loading

N-'

INm + (Nm*- N' )exp(-A 2,-e), for reverse
loading

and

T0 l+a((Ep)m , for initial loading

-T /l+a(e )m(l-exp(-6&)] , for reverse loading
0 p p

In the preceding equations, P denotes the thermodynamic pres-

sure, P is the mass density, E represents the specific internal

energy, and v is the shear modulus.

Procedures for evaluating the coefficients which appear

in the above equations have been described in previous sections,

and the final results for 6061-T6 aluminum may be summarized

as follows:

a = 2.50

m =0.5

A = 180* !

M = 2x1013 cm-(
1 (4 .51)

No = 1x10 8 cm- 2
-2*

Nm• = 10X10 8x0 cm

a = 5.6xi0 3 cm/sec/kbar

a = 9x105 cm/sec/kbar 2

See Section V.5 where revised values for A, and N are sug-
gested for use in conjunction with finite-differeW'ce codes.
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To = 1.39 kbar

6 = 20 (4.s5)

A = 1.2x104
2-

N' = Sx107 cm2

In addition, the Burgers vector b was assigned the .. ual value

for aluminum of 2.86 10-8 cm, the shear modulus was given the

value ii = 277 kbar, and the shear wave velocity Cs was taken

as 3.26x10 5 cm/sec.

In the present study the equation of state adopted was:

(AO+B6 2 +CO3 ) (1 _ GO + GpE , for 0 > 0

P = (4.52)

(H(-)](E-E 11-expff(l for 0 < 0

where

2P Po

(4.53)

p
00

The constants appearing in the equation of state were assigned

the following values:

Po = 2.70 g/cm C = 2008 kbar

G = 2.13 H = 0.66 (4.54)

A = 728 kbar N = 1.056

B = 1313 kbar Es = 1.2x1011 erg/g

for 6061-T6 aluminum. The values of V, Cs, A, B, and C given

above were determined from experimental data furnished by
Isbeln, et al.(6)
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V. NUMERICAL AND EXPERIMENTAL STUDIES OF THE PROPAGATION

AND ATTENUATION OF STRESS WAVES, AND OF INCIPIENT

SPALL PHENOMENA

In this section, the results of some numerical studies

carried out with the RIP code, using the constitutive equation

described in the preceding sections, are given. Qualitative

features of computed loading and unloading wave profiles are

examined, together with computed stress pulse attenuation, and

comparisons of the computed results with experimental data are

given. Finally, the influence of strain hardening, strain rate

and Bauschinger effects on the calculation of incipient spall

thresholds is discussed.

During plastic wave propagation, a material element may

be subjected to a very wide range of strain rates. In order to

give some graphic indication of how the present constitutive

equation behaves over such a range, a plot of the constitutive

relation for fixed values of the plastic strain is given in

Fig. 12. Experimental data from Ref. 6 have been included to

give some indication of how well the present constitutive

model agrees with the data. Unfortunately, as noted earlier

in the text, there is no direct experimental data on 6061-T6

aluminum for strain rates greater than 103 sec . Aside from

indirect experimental data - such as plastic wave profiles,

precursor decay, etc. - the region of the graph above a strain

rate of 103 sec"1 is experimentally unexplored. As this figure

reveals, the proposed model is essentially rate-insensitive in

the range of strain rates between 10-3 and 10 3sec 1 in accord

with the experimental data. Above a strain rate of about 10'
_!

sec , the viscous terms in the constitutive equation begin to

have some noticeable effect, and at the higher strain rates,

the influence of the relativistic effect is clearly evident.
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A. Transient Loading Waves

The results of numerical studies carried out on the impact

problems corresponding to shots No. 16, 20 and 51 r orted in

Ref. 6 are discussed in this section. For convenience,

descriptive aspects of these three problems have been summarized

below in Table II. In each case, the flyer plate and the target

material was 6061-T6 aluminum, and the rear surface of the

target was free.

Table II

Summary of Shots 16, 20 and S1(6)

Flyer Target Impact Peak
Thickness Thickness Velocity Stress

Shot No. (mm) (mm) (mm/hsec) (kbar)

16 1.875 3.124 0.257 20

20 1.488 3.132 0.523 40

51 1.483 3.073 0.155 12.5

In Fig. 13, a comparison of the computed and experimentally

observed motion of the rear free-surface of the target caused

by the reflection of the transient stress wave is shown for

the three problems described above. The experimental data was

obtained through the use of a laser interferometer. An in-

spection of Fig. 13 reveals that the present constitutive model

predicts the dispersion of the plastic waves very well and,

consequently, gives accurate rise times. It appears that the

discrepancies between the computed and observed peak free sur-

face velocities for shots No. 16 and 20 are due to uncertainties
in the experimental data.* It is important to note that in

In a privatecommunication from W. Isbell, it was learned that
there is some uncertainty in the experimental data shown in
Fig. 13 near the top of the profiles for shots No. 16 and 20.
It appears, however, that the experimental rise times in the
plastic waves for these shots are accurate.
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Figure 13. Comparison of computed and observed tran-
sient wave profiles in 6061-T6 aluminum.
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order to achieve the agreement shown in Fig. 13, it was neces-
sary to make changes in the values of A and Nm determined

from the steady wave analysis. Specifically, the values

=6 0 (5 .1 )

NmW = 4xlO8 cm

were found to provide the best results, and they have been

used in all the numerical studies reported in the sequel. The

need for changes in these coefficients apparently arises from
the fact that, in the finite-difference solutions, dispersion

in the plastic wave occurs not only from the material viscosity
and the imposed artificial viscosity, but also from the unavoid-
able inherent viscosity associated with error terms in the dif-

ferencing scheme. The steady wave analysis, on the other hand,

is not encumbered by such numerical artifacts; only the material
viscosity is present. Consequently, in order to compensate in

the finite-difference methods for the dispersion effects of
numerical origin, less material viscosity than that indicated

by the steady wave analysis must be used. Discrepancies be-

"tween finite-difference methods and steady wave analysis have
,

also been observed by others.

B. Attenuated Wave Profiles

In order to examine the ability of the present constitu-

tive model to predict the shape of thin attenuated stress
pulses in 6061-T6 aluminum, several problems involving attenuated

waves were studied numerically, and these results are reported in

this section. These problems, for which Isbell, et al. have ob-

tained experimental data, are reported as shots 110-112 in Ref.6.

A summary of these shots is given below in Table III; in each

Private communicatien with W. Herrmann, Sandia Laboratories.
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case, the flyer plate and the target material was 6061-T6

aluminum and the target rear surfaces were free.

Table III

Summary of Shots 110, 111, and 112(6)

Flyer Target Impact Peak
Thickness Thickness Velocity Stress

Shot No. (mm) (mm) (mm/psec) (kbar)

110 0.419 3.970 0.418 32.1

i1 0.426 3.992 0.374 28.7

112 0.426 3.993 0.246 19.0

In Figs. 14-16, the numerical results for these problems

are depicted, together with the corresponding experimental

data and numerical results obtained using a simple elastic-
plastic model. Although the combined flyer and target thick-

ness was about the same in each case, the range of impact

velocities covered.by these three problems leads to considerable

differences in the observed wave profiles. Incidentally, the

impacts in shots 110 and 111 were intense enough to spall the

target material, and the signal which emanated from the spalled
region in these shots produced a reversal in the observed free

surface velocity, as shown. In the numerical calculations,
however, no spallation was permitted. Consequently, it is not

meaningful to compar,• the computed results with the experimental

data for shots 110 and 11 beyond the point (located approxi-

mately on the figures) where the spall signal first reached the

free surface.

An examination of Figs. 14-16 shows that the numerical

results based on the present constitutive model are in excellent

agreement with the experimental data, and they provide sig-

nificant improvement over the corresponding results for the

simple elastic-plastic model. Perhaps the most apparent
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discrepancy between the results for the two models is in the

shapes of the release waves, and this is most pronounced in

shot 112. It appears that the approximate agreement between

the computed peak free surface velocity for both models is
fortuitous to some extent, inasmuch as the significant dif-

ferences in the shapes of the release wave profiles for these
models would undoubtedly lead to differences in peak stress
for further attenuation.

C. High Pressure, Thin Pulse Attenuation

As a final proof-test of the constitutive model developed

herein, the attenuation of a high pressure (102 kbar) thin
stress pulse was calculated numerically and the results were
compared with experimental data obtained by Isbell, et al.
for shots 73, 74, and 79 reported in Ref. 6. In these experi-
ments very thin 6061-T6 aluminum flyer plates backed by plexi-

glass were impacted at nearly identical velocities on 6061-T6
aluminum targets, of different thickness, backed by fused

quartz. A summary of the important features of these shots is
given in the following table:

Table IV

Summary of Shots 73, 74, and 79

Flyer Target Impact
Shot Thickness* Thickness* Velocity Peak Stress
No. (mm) (mm) (mm/iisec) (kbar)

73 0.269 2.520 1.242 103
74 0.252 5.067 1.238 102
79 0.252 1.029 1.235 102

Thickness of the 6061-T6 aluminum portion only.

Numerical studies were carried out for the above shots
* using the present constitutive model for 6061-T6 aluminum and

constitutive models for plexiglass and fused quartz given,

respectively, in Refs. 63 and 62. The results of these numer-
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ical studies together with the corresponding experimental data

from Ref. 6 are shown in Fig. 17. Here, the calculated and

observed particle-velocity history at the aluminum-fused quartz
interface is depicted for the three target thicknesses studied.
As an inspection of this figure will reveal, the agreement be-

tween the calculated and observed attenuation is excellent,

as well as the agreement between the qualitative features of
the wave profiles. The residual interface velocity of about

0.350 mm/psec, which persists after the passage of the release
portion of the stress pulse, is due primarily to the plexi-

glass backing on the flyer plate. It therefore appears that
the present constitutive model can be used to accurately pre-
dict the attenuation of thin stress pulses in 6061-T6 aluminum

for initial impact stresses of 100 kbar or less. No attempt

to check on the ability of the present model to predict atten-

uation for initial stresses in excess of 100 kbar has been
made in the present study.

In the next section we shall investigate the effect that

the differences in dynamic response between the present model
and the simple elastic-plastic model have on the calculation
of incipient spallation thresholds in 6061-T6 aluminum.

D. Differences in the Evaluation of Spall Criteria Result-
ing from the Use of the Present Constitutive Model and
the Simple Elastic-Plastic Model

The numerical studies of spallation in metals which have
been reported in the past have been based, to the authors'

knowledge, solely on the use of a simple elastic-plastic con-
stitutive model. Because of this, questions inevitably arise
regarding the extent to which the evaluation of particular
spall criteria would be influenced by the use of a more real-

istic material model. In the case of most metals, there is
reason to believe that the analysis of spall data for problems

involving thin attenuated stress pulses would be the most sen-
sitive to the constitutive description.
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In an~attempt to shed some light on this question, numer-

ical studies were performed on two impact problems involving
attenuated waves which resulted in incipient material damage
to the target. The detail, of these problems, are described
below in Table V.

Table V

Summary of Incipient Spall Problems

Problem Thicknass Thickness Velocity Experimental
No. (cm) (cm) (mm/psec) Investigator

1 0.046 0.402 0.345 GM(6)

2 0.013 0.328 1.120 ETI( 6 5 )

With the exception of problem 2, where a Mylar flyer plate

was used, the flyer plate and target material was 6061-T6
aluminum. The constitutive equation used in the numerical
study for Mylar was taken from Ref. 63.

Using both the present constitutive model and the simple

elastic-plastic model, two spall criteria were examined in
the numerical studies. Attenuation was directed specifically
to the cumulative damage criterion and the tensile strain cri-
terion, since both of these have received attention recently
in connection with 6061-T6 aluminum.(66-68)

1. The Cumulative Damage Criterion

The cumulative damage criterion, originally suggested
by Tuler and Butcher (66) for use in conjunction with uniaxial

strain configurations, is based on the consideration of a
function F, defined at a point as

At -( o s2
F( 1,, t) = [a, o] dt, for a (a (5.2)

0

The results reported in this section represent only one aspect
of the investigation of spall in metals carried out by S3
under the PREDIX program; for additional results, see Ref.64.
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Here, ao denotes the tensile stress component in the direction
of the only nonvanishing component of strain; (ado is a (con-

stant) tensile stress, below which fracture is not expected to

occur on the time scales considered here; X is a coefficient,

and At represents the width of the tensile pulse at the stress

level a, - (a))o . The cumulative damage criterion states that

spall will take place in the material at the point(s) where the

function F equals or exceeds a critical value K. For incipient

spall, the maximum value of the function F equals K.

An effort to correlate the currently available incipient

spall data for 6061-T6 aluminum by the cumulative damage cri-

terion has recently been reported by Fisher.( 6 8 ) In this study

it was found that the following values for the coefficients

in the cumulative damage criterion

{i)o = 4.25 kbar

S= 4.3 (5.3)
K = 2-3x10 3 (kbar)X isec

provide the best correlation of the experimental spall data for

6061-T6 aluminum at room temperature. It should be noted that

except for (a,)o, the above values for the coefficients differ

from those originally suggested in Ref. 66; however, much more

experimental spall data for 6061-T6 aluminum was available at

the time the above values of coefficients were determined than
when Tuler and Butcher did their original analysis. In the
work reported here, the coefficients were assigned the values

listed above in Eq. (5.3).

A summary of the numerical results obtained in this study

is given below in Table VI. Here, the computed values of (1)

the peak tensile stress, (a ,max' (2) the pulse width, At, at
the stress level a,1= (adi (3) the maximum value of the func-

tion F, and (4) the distance xs, between the front surface of

the target and the predicted spall location are given for

both material models.

Following the sign convention adopted throughout Ref. 66,

tensile stresses are taken as positive in this section.
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Table VI

Summary of Results for Cumulative Damage Criterion

Peak Stress Pulse Width Spall
Problem (a,)max At FmaxX10- Location,xs
_No. (kbar) (psec) (kbarXsec) (cm)

PM SEPM PM SEPM PM SEPM PM SEPM

1 15.4 15.4 0.221 0.199 2.72 2.74 0.329 0.343

2 16.1 19.9 0.132 0.124 1.65 4.73 0.280 0.295

Present Model
Simple Elastic-Plastic Model

The computed tensile stress histories at the predicted

spall locations in problems 1 and 2 are shown in Figs.18 and 19.

Here, the results for both the present constitutive model and

the simple elastic-plastic model are depicted. A dashed line

at the stress level a = 4.25 kbar has been included on each

of these figures to indicate the point at which the pulse widths

given in Table V were determined.

An inspection of TableVI and Figs. 18 and 19 shows that the

discrepancy between the calculated results for the two consti-

tutive models is much greater in problem 2 than in problem 1.

In problem 1, the results for each constitutive model are in

reasonably good agreement with one another. As reference to
Table VI will confirm, the calculated values of the peak ten-

sile stress and the maximum of the function F are almost the

same. Differences arise between the computed pulse widths and

spall locations, but these are small, being on the order of 10%.

It must therefore be concluded that at least for problem 1, the

differences in the tensile stress histories evident in Fig.

do not have a significant effect on the evaluation of the cumu-

lative damage criterion.
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In problem 2, the situation is considerably different.

Significant differences which have bearing on the cumulative
damage criterion arise in this problem. Of the two problems
studied, problem 2 involves much greater stress attenuation
and has the narrower tensile pulse width. The calculated peak
tensile stresses in this problem differ by almost 24%, and the
computed values of Fmax' which depend strongly on the peak ten-
sile stress, differ by nearly a factor of three. On the other
hand, there is reasonable agreement between the computed pulse
widths and spall locations.

The extent to which the use of the present constitutive
model in the numerical studies modifies results obtained from
the use of the simple elastic-plastic model is illustrated in
Fig. 20. Here, the results obtained in the present study for
problems 1 and 2 are shown together with previously reported
spall results(6for 6061-T6 aluminum.(68) Ideally, the points
shown in Fig. 20 would fall on a horizontal line F = Kmax
if the cumulative damage criterion correlated the data. Some
of the observed scatter can, however, be attributed to the
uncertainties involved in experimentally determining the incip-
ient spall thresholds.

It should be emphasized that, with the exception of
problems 1 and 2, the results shown in Fig.20 pertain entirely
to experiments wherein the initial stress waves are unatten-
uated. Several of the unattenuated wave problems were reex-
amined using the present constitutive model and from this,
very little change occurred in the results for these problems
from that shown in the figure.

From this limited study, it appears that even in a material
such as 6061-T6 aluminum which exhibits relatively small strain
hardening and strain rate effects, significant differences can
arise in the evaluation of the cumulative damage criterion,

particula:iy in problems involving attenuated stress waves
and thin stress pulses.
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2. The Tensile Strain Criterion

A spall criterion based on tensile strain has recently
been proposed and applied to several metals by Tuler.(67) In
this criterion, incipient spall is predict,3 at the positions(s)
in the material where the tensile strain, eT, has its maximum
absolute value, provided the following equation is satisfied:

(16TImax) I At = K1  (5.4)

Here, lETimax denotes the maximum of the absolute value of cT,
At is the width of the tensile strain pulse, and X1, K, are

coefficients.

To determine the sensitivity of this criterion to differ-
ences in the constitutive model for 6061-T6 aluminum, problems
1 and 2 were reexamined numerically, using both the present
constitutive model and the simple elastic-plastic model. The
important results of this study are summarized below in
Table VIland depicted in Figs. 21-23.

Table VII

Summary of Results for Tensile Strain Criterion

Spall
Problem JeTimax Pulse Width,At Location, x5

( sec) (cm)
No. PM* SEPMR* PM SEPM PM SEPM

1 .0174 .0183 0.221 0.199 0.329 0.343
2 0179 .0250 0.132 0.124 0.280 0.295

Present Model
Simple Elastic-Plastic Model

Due to the tailing off of the tensile strain beyond its
peak value, the meaning of the term "pulse width" is somewhat
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obscure, as reference to Figs. 21 and 22 will reveal. Because of
this, we have used the width of the corresponding tensile stress
pulse to correlate the spall results, and it is this pulse width
which is listed in Table VII. In addition, the spall location,

x Xs, listed in Table VII represents the distance from the front
surface of the target to the point in the target where the great-

est tensile strain occurred.

The influence which the different material models have on
the evaluation of the tensile strain criterion is illustrated
in Fig. 23 where results previously reported in Ref. 67 are
depicted together with the present results for problems 1 and 2.
From this figure it is clear that the greatest discrepancy be-
tween the results for the two models occurs, as before, in prob-
lem 2 , where the calculated peak tensile strains differ by

almost 40%.

3. Closure

While there is at the present time no generally accepted
criterion for spallation in metals, two criteria have been
considered here which have received recent attention in con-
nection with 6061-T6 aluminum, namely, the cumulative damage
and tensile strain criteria. Numerical studies were carried out
for several problems in which incipient material damage was
observed to determine the sensitivity of the two spall criteria
to differences in the constitutive model. For this purpose the
present constitutive model, which accounts for strain hardening,
strain rate, and a Bauschinger effect, and the simple elastic-
plastic model, which neglects the above effects, were used in
the numerical studies.

Compared with other metals, such as a-titanium, beryllium,
and tantalum, 6061-T6 aluminum exhibits relatively small strain
hardening and strain rate effects. Nevertheless, the present
results indicate that the inclusion of strain hardening, strain
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rate, and a Bauschinger effect in the constitutive model can
have a significant effect on the evaluation of spall criteria
for such a material, especially in problems involving atten-
uated waves and thin stress pulses.
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VI. CONCLUSION

The present work was initiated with the goal of developing

a constitutive model for use in computer codes which will pro-

vide a more realistic description of the dynamic response of

metals than the simple elastic-plastic model. Throughout this

study, the emphasis has been placed on high strain rate phenomena

which accompany plastic wave propagation. Very little, however,

is presently known about the micromechanical mechanisms that

govern plastic flow at high strain rates. Present day experi-

mental techniques for mapping the stress-strain-strain rate

relationship for metals, e.g., the split Hopkinson bar, are

generally limited to strain rates not exceeding 103 sec

Because of this, there is no direct experimental data available

in the range of strain rates of importance in plastic wave
-IIpropagation, namely., 103_107 sec 1. Thus it becomes necessary

to resort to the use of indirect experimental data, such as
elastic precursor decay and steady wave profiles, in order to

gain some insight into the high strain rate plastic response of

these materials.

An attempt has been made in the present work to utilize,
whenever possible, current knowledge of dislocation theory in

the formulation of the constitutive model. It is not the intent,

however, to imply that the present model has physical sig-

nificance at the microstructural level; as noted above, the

micromechanical mechanisms that govern the mobility and multi-

plication of dislocations at high strain rates are not well

understood at the present time. In most instances, only simple

models of the mechanisms can be constructed and, even to

accomplish this, considerable speculation is required. In other

instances, where dislocation theory cannot provide guidance in

defining and characterizing a particular plastic flow mechanism,

a phenomenological approach has been followed.
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On the basis of this philosophy, a constitutive model of

metals has been developed which exhibits the following general

features of plastic flow:

e strain hardening

* thermal activation

a a Bauschinger effect

* viscous drag

* dislocation multiplication and annihilation

* a limiting dislocation velocity (relativistic
effect)

A numerical scheme for incorporating the constitutive model

into one-dimensional finite-difference codes has been developed

and implemented in the RIP code. A complete documentation of

this scheme has been given in Ref. 69.

A procedure for evaluating the coefficients in the con-

stitutive model for a given material has been described and

specifically illustrated for 6061-T6 aluminum at room tem-

perature. In this case, the types of experimental data required

to evaluate the coefficients in the model were:

N quasi-static stress-strain curves and elastic moduli

* precursor decay curves

. plastic loading wave profiles

e plastic release wave profiles

When the effect of thermal activation on the high strain rate

response cannot be disregarded, as was possible in the case of
6061-T6 aluminum studied here, additional experimental data

are required before the thermal component of the strain rate
dependent portion of the shear stress can be isolated from

the viscous drag component. This can be accomplished, however,
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in a rather straightforward manner with a uniaxial stress
machine through tests involving both strain rate changes at

constant temperature and temperature changes at constant strain

rate (see Ref. 70).

Although 6061-T6 aluminum does not exhibit large strain
hardening and strain rate effects at room temperature compared
with most metals of current interest in reentry vehicle design,
the evaluation of spall criteria for this material was found
to be sensitive to the inclusion of strain rate, strain harden-
ing, and a bauschinger effect in the constitutive description;
this was particularly true in problems involving very thin
attenuated stress pulses, which are the type expected to arise
in a material suddenly exposed to nuclear radiation. There is
reason to believe that spall criteria which depend on either the
stress gradient, stress rate, or strain rate may be influenced
even more strongly by the constitutive description than the two
criteria examined here. Therefore, in materials which exhibit

greater strain hardening and strain rate effects than 6061-T6
aluminum, the simple elastic-plastic model may be unreliable
for use in spall studies; when this is the case, a more realistic
constitutive model will be required before meaningful analysis

of spall results can be made.

As noted in the beginning, the effects of temperature
changes and heating rate on the constitutive relation have not
been considered in the present study. The sudden exposure of
a metal component to radiation; however, can produce increases
in the temperature of the component large enough to affect its
dynamic response. It is well-known that metals show increased
strain rate sensitivity as the temperature is raised. Because
of this, the discrepancy between actual material behavior and
that predicted with the simple elastic-plastic model can be
expected to become increasingly greater as the temperature

increases. At elevated temperatures, the need for a more

realistic constitutive model becomes even more important.
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APPENDIX

AN ALTERNATIVE BAUSCHINGER MODEL

An alternative approach for treating the rate-independent

shear stress component, T,,, during reversed strailLing of metals

which exhibit a Bauschinger effect is presented in this appendix.

The approach described here is motivated largely by ideas pre-

sented initially by Duwez (49) and later by Mr6z(SO); it differs

from the approach discussed earlier in the text in that (1) it

is based on concepts of pure kinematic hardening and (2) it com-

pletely prescribes the reverse-loading path directly from the

initial loading path. In other words, when the dependence of

T on ep for initial plastic loading has been determined, the
reverse loading path is set; no additional parameters are re-
quired to specify the reverse loading path for this model.
Models similar to this have been applied by Luwez(49) and
Herrmann,et al. (12) to describe reverse loading behavior in

copper and aluminum, respectively.

To further amplify the preceding ideas, let us turn to

Fig. 24, where the dependence of T on e for the alternative
Bauschinger model is depicted. We shall describe the defor-

mation process and the model as one traverses the path
a-b-c-d-e shown in this figure. Between points 0 and a,
elastic loading takes place with a corresponding increase in
the magnitude of T from zero to T , the initial yield shear
stress. Plastic loading occurs between a and b, where the
increase in T) due to strain hardening is given by some expres-
sion of the form

TP = f(C ) (A.1)

where the function f is taken in the present work to have the

form
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f= T N1 + at), (A.'?)
0 P

in accordance with Eq. (3.18). At point b, elastic unloading

begins and the stress T decreases elastically to zero with no

change in the plastic strain. Reverse loading of T P occurs

elastically between c and d and, at point d, reverse plastic

flow is initiated. Following Duwez and Mroz, the shear stress
at which reverse plastic flow first occurs in this model
(point d) is determined by subtracting the quantity 2T from0

the value of T11 reached at the end of the initial loading pro-
cess. Let us note parenthetically that this feature of the
model is acceptable from the thermodynamical standpoint only
so long as the reverse yield point (point d) falls in the region

Tr <0; if the drop of 2T from point b should place point d1-1 0
in the region T >0, the subsequent unloading process would lead

to negative plastic work and, therefore, prove to be unacceptable
thermodynamically. Consequently, the use of this model appears

to be restricted to the range of initial plastic deformations

for which point d falls within the region T < 0. Returning
now to Fig. 24, T- follows a strain hardening path between d
and e during reverse loading which is described by the expression

TI= 2f(e'/2) (A.3)

where the primes refer to the coordinate system centered at

point b (as shown), and f denotes the function used to prescribe
the initial loading path, which was given earlier in Eq. (A.2).
Because this model is based on pure kinematic hardening, the

path e-f-g-b is similar to the path b-c-d-e and the hysteresis
loop will be closed, as shown.

A comparison of the reverse loading paths determined from
this model with the corresponding experimental paths for several
values of plastic prestrain is shown in Fig. 25 for 6061-T6
aluminum. The experimental curves are the same as those which
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Figure 25. Comparison between the reverse loading paths
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were given earlier in Fig. 7 and they were determined by
Isbell,et al.( 6 ) from uniaxial stress tests carried out under

quasi-static conditions. For purposes of comparison, the
reverse loading path predicted by an isotropic hardening model

for a plastic prestrain of 0.03 is also shown on this figure.
As a comparison of Figs. 7 and 25 will reveal, the Bauschinger
model described in the main text shows better agreement with

the experimental curves than the alternative Bauschinger model

described here; this is not too surprising, however, inasmuch

as the Bauschinger model described in the text has two adjust-
able coefficients and can be refined more to agree with experi-

mental data than the alternative Bauschinger model, which has

no adjustable coefficients.
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